(0,2) CHIRAL LIOUVILLE FIELD THEORY

被引:1
|
作者
Nakayama, Yu [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
关键词
(0,2) supersymmetry; Liouville theory; heterotic supersymmetry;
D O I
10.1142/S0217732313501782
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
As an existence proof of the (0,2) heterotic supercurrent supermultiplets in (1+1)-dimensional quantum field theories which are consistent with the warped superconformal algebra, we construct the (0,2) chiral Liouville field theories. The two distinct possibilities of the heterotic supercurrent supermultiplets are both realized
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A proposal for nonabelian (0,2) mirrors
    Gu, Wei
    Guo, Jirui
    Sharpe, Eric
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 25 (06) : 1549 - 1596
  • [42] Issues of heterotic (0,2) compactifications
    Blumenhagen, R
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (1-3): : 37 - 40
  • [43] Classification of small (0,2)-graphs
    Brouwer, Andries E.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (08) : 1636 - 1645
  • [44] Novel branches of (0,2) theories
    Quigley, Callum
    Sethi, Savdeep
    Stern, Mark
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09):
  • [45] Rational curves and (0,2)-deformations
    Aspinwall, Paul S.
    Gaines, Benjamin
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 88 : 1 - 15
  • [46] Fixed points of (0,2) Landau-Ginzburg renormalization group flows and the chiral algebra
    Bertolini, Marco
    Melnikov, Ilarion, V
    Plesser, M. Ronen
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [47] THE REVIVAL OF (0,2) SIGMA MODELS
    McOrist, Jock
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (01): : 1 - 41
  • [48] IR duality in 2D N = (0,2) gauge theory with noncompact dynamics
    Dedushenko, Mykola
    Gukov, Sergei
    PHYSICAL REVIEW D, 2019, 99 (06)
  • [49] CONVERGENCE OF (0,2) AND (0,1,3) INTERPOLATIONS
    VERTESI, POH
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1971, 22 (1-2): : 127 - &
  • [50] Weighted (0;0,2)-interpolation on the roots of hermite polynomials
    Srivastava, R
    Mathur, KK
    ACTA MATHEMATICA HUNGARICA, 1996, 70 (1-2) : 57 - 73