Learning non-linear time-scales with kernel γ-filters
被引:4
|
作者:
Camps-Valls, Gustavo
论文数: 0|引用数: 0|
h-index: 0|
机构:
Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, SpainUniv Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain
Camps-Valls, Gustavo
[1
]
Munoz-Mari, Jordi
论文数: 0|引用数: 0|
h-index: 0|
机构:
Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, SpainUniv Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain
Munoz-Mari, Jordi
[1
]
Martinez-Ramon, Manel
论文数: 0|引用数: 0|
h-index: 0|
机构:
Univ Carlos III Madrid, Dept Teoria Senal & Comunicac, E-28903 Getafe, SpainUniv Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain
Martinez-Ramon, Manel
[2
]
Requena-Carrion, Jesus
论文数: 0|引用数: 0|
h-index: 0|
机构:
Univ Rey Juan Carlos, Dept Teoria Senal & Comunicac, Madrid, SpainUniv Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain
Requena-Carrion, Jesus
[3
]
Luis Rojo-Alvarez, Jose
论文数: 0|引用数: 0|
h-index: 0|
机构:
Univ Rey Juan Carlos, Dept Teoria Senal & Comunicac, Madrid, SpainUniv Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain
Luis Rojo-Alvarez, Jose
[3
]
机构:
[1] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain
[2] Univ Carlos III Madrid, Dept Teoria Senal & Comunicac, E-28903 Getafe, Spain
[3] Univ Rey Juan Carlos, Dept Teoria Senal & Comunicac, Madrid, Spain
Gamma filter;
Support vector machine;
Kernel;
Non-linear system identification;
SUPPORT VECTOR MACHINES;
D O I:
10.1016/j.neucom.2008.10.004
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
A family of kernel methods, based on the gamma-filter structure, is presented for non-linear system identification and time series prediction. The kernel trick allows us to develop the natural non-linear extension of the (linear) support vector machine (SVM) gamma-filter [G. Camps-Valls, M. Martinez-Ramon, J.L. Rojo-Alvarez, E. Soria-Olivas, Robust gamma-filter using support vector machines, Neurocomput. J. 62(12) (2004) 493-499.], but this approach yields a rigid system model without non-linear cross relation between time-scales. Several functional analysis properties allow us to develop a full, principled family of kernel gamma-filters. The improved performance in several application examples suggests that a more appropriate representation of signal states is achieved. (C) 2008 Elsevier B.V. All rights reserved.
机构:
Univ Ghent, Dept Math Anal, Res Grp Numer Anal & Math Modeling NaM2, B-9000 Ghent, BelgiumUniv Ghent, Dept Math Anal, Res Grp Numer Anal & Math Modeling NaM2, B-9000 Ghent, Belgium
Slodicka, M.
Seliga, L.
论文数: 0|引用数: 0|
h-index: 0|
机构:
Univ Ghent, Dept Math Anal, Res Grp Numer Anal & Math Modeling NaM2, B-9000 Ghent, BelgiumUniv Ghent, Dept Math Anal, Res Grp Numer Anal & Math Modeling NaM2, B-9000 Ghent, Belgium