Learning non-linear time-scales with kernel γ-filters

被引:4
|
作者
Camps-Valls, Gustavo [1 ]
Munoz-Mari, Jordi [1 ]
Martinez-Ramon, Manel [2 ]
Requena-Carrion, Jesus [3 ]
Luis Rojo-Alvarez, Jose [3 ]
机构
[1] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain
[2] Univ Carlos III Madrid, Dept Teoria Senal & Comunicac, E-28903 Getafe, Spain
[3] Univ Rey Juan Carlos, Dept Teoria Senal & Comunicac, Madrid, Spain
关键词
Gamma filter; Support vector machine; Kernel; Non-linear system identification; SUPPORT VECTOR MACHINES;
D O I
10.1016/j.neucom.2008.10.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A family of kernel methods, based on the gamma-filter structure, is presented for non-linear system identification and time series prediction. The kernel trick allows us to develop the natural non-linear extension of the (linear) support vector machine (SVM) gamma-filter [G. Camps-Valls, M. Martinez-Ramon, J.L. Rojo-Alvarez, E. Soria-Olivas, Robust gamma-filter using support vector machines, Neurocomput. J. 62(12) (2004) 493-499.], but this approach yields a rigid system model without non-linear cross relation between time-scales. Several functional analysis properties allow us to develop a full, principled family of kernel gamma-filters. The improved performance in several application examples suggests that a more appropriate representation of signal states is achieved. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1324 / 1328
页数:5
相关论文
共 50 条