A thermal model of friction stir welding applied to Sc-modified Al-Zn-Mg-Cu alloy extrusions

被引:63
|
作者
Hamilton, C. [1 ]
Sommers, A. [1 ]
Dymek, S. [2 ]
机构
[1] Miami Univ, Dept Mech & Mfg Engn, Oxford, OH 45056 USA
[2] AGH Univ Sci & Technol, Fac Met Engn & Ind Comp Sci, PL-30059 Krakow, Poland
来源
关键词
Friction stir welding; Thermal model; Slip factor; Heat flux; Aluminum alloys; MATERIAL FLOW; TEMPERATURE; STRESSES; HISTORY;
D O I
10.1016/j.ijmachtools.2008.11.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A thermal model of friction stir welding is presented that proposes an energy-based formulation of the Johnson-Cook plasticity model in order to account for heat generation due to plastic deformation. The proposed formulation is derived from an empirical, linear relationship observed between the ratio of the maximum welding temperature to the solidus temperature of the alloy and the welding energy. The thermal model is applied to Sc-modified Al-Zn-Mg-Cu alloy extrusions joined by friction stir welding at 225, 250. 300 and 400 RPM (all other weld parameters held constant). With the incorporation of heat generation due to plastic deformation, the thermal model accurately predicts the maximum weld temperatures and temperature profiles at the higher energy weld conditions, i.e. 300 and 400 RPM. At the lower energy welds (i.e. 225 and 250 RPM) where plastic deformation contributes a larger portion to the total heat generation, the model under-predicts the maximum weld temperatures under the toot shoulder but shows good agreement with the remaining experimental temperature data. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:230 / 238
页数:9
相关论文
共 50 条
  • [31] Influence of Pin Profile on the Tool Plunge Stage in Friction Stir Processing of Al-Zn-Mg-Cu Alloy
    Patel, Vivek V.
    Badheka, Vishvesh J.
    Kumar, Abhishek
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2017, 70 (04) : 1151 - 1158
  • [32] Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation
    dos Santos, J. F.
    Staron, P.
    Fischer, T.
    Robson, J. D.
    Kostka, A.
    Colegrove, P.
    Wang, H.
    Hilgert, J.
    Bergmann, L.
    Huetsch, L. L.
    Huber, N.
    Schreyer, A.
    ACTA MATERIALIA, 2018, 148 : 163 - 172
  • [33] Microalloying of Sc, Ni, and Ce in an advanced Al-Zn-Mg-Cu alloy
    Wu, YL
    Froes, FH
    Li, CG
    Alvarez, A
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (04): : 1017 - 1024
  • [34] Microalloying of Sc, Ni, and Ce in an advanced Al-Zn-Mg-Cu alloy
    Yi-Lei Wu
    Chenggong Li
    F. H. (Sam) Froes
    Alex Alvarez
    Metallurgical and Materials Transactions A, 1999, 30 : 1017 - 1024
  • [35] Microalloying of Sc, Ni, and Ce in an advanced Al-Zn-Mg-Cu alloy
    Wu, Yi-Lei
    Froes, F.H.
    Li, Chenggong
    Alvarez, Alex
    Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 30 (04): : 1017 - 1024
  • [36] A thermal model of friction stir welding applied to aluminum 7136-T76511 extrusions
    Hamilton, C.
    Dymek, S.
    Blicharski, M.
    Kalemba, I.
    TMS 2008 ANNUAL MEETING SUPPLEMENTAL PROCEEDINGS, VOL 3: GENERAL PAPER SELECTIONS, 2008, : 33 - +
  • [37] SUPERPLASTICITY IN AN AL-ZN-MG-CU ALLOY
    MALEK, P
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1991, 137 : 21 - 26
  • [38] Thermal history and microstructure during friction stir welding of Al–Mg alloy
    J. Y. Sheikh-Ahmad
    F. Ozturk
    F. Jarrar
    Z. Evis
    The International Journal of Advanced Manufacturing Technology, 2016, 86 : 1071 - 1081
  • [39] Thermal history and microstructure during friction stir welding of Al–Mg alloy
    Sheikh-Ahmad, J.Y. (jahmad@pi.ac.ae), 1600, Springer London (86): : 1 - 4
  • [40] Friction stir welding of novel T-phase strengthened Zn-modified Al–Mg alloy
    Di Zhang
    Xu Wang
    Yanlin Pan
    Shengli Hou
    Jishan Zhang
    Linzhong Zhuang
    Li Zhou
    Journal of Materials Science, 2021, 56 : 5283 - 5295