Relation between entanglement measures and Bell inequalities for three qubits

被引:30
|
作者
Emary, C [1 ]
Beenakker, CWJ [1 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 03期
关键词
D O I
10.1103/PhysRevA.69.032317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For two qubits in a pure state there exists a one-to-one relation between the entanglement measure (the concurrence C) and the maximal violation M of a Bell inequality. No such relation exists for the three-qubit analog of C (the tangle tau), but we have found that numerical data is consistent with a simple set of upper and lower bounds for tau given M. The bounds on tau become tighter with increasing M, so they are of practical use. The Svetlichny form of the Bell inequality gives tighter bounds than the Mermin form. We show that the bounds can be tightened further if the tangle is replaced by an entanglement monotone that can identify both the W state and the Greenberger-Horne-Zeilinger state.
引用
收藏
页码:032317 / 1
页数:3
相关论文
共 50 条
  • [21] Entanglement and Bell inequalities with boosted tt
    Dong, Zhongtian
    Goncalves, Dorival
    Kong, Kyoungchul
    Navarro, Alberto
    PHYSICAL REVIEW D, 2024, 109 (11)
  • [22] Entanglement correlations, Bell inequalities and the concurrence
    Cirone, MA
    PHYSICS LETTERS A, 2005, 339 (3-5) : 269 - 274
  • [23] On the relation between Bell's inequalities and nonlocal games
    Silman, J.
    Machnes, S.
    Aharon, N.
    PHYSICS LETTERS A, 2008, 372 (21) : 3796 - 3800
  • [24] Bell's inequality, generalized concurrence and entanglement in qubits
    Chang, Po-Yao
    Chu, Su-Kuan
    Ma, Chen-Te
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (6-7):
  • [25] Explicit form of correlation-function three-setting tight Bell inequalities for three qubits
    Wiesniak, Marcin
    Badziag, Piotr
    Zukowski, Marek
    PHYSICAL REVIEW A, 2007, 76 (01):
  • [26] Many-body Bell inequalities for bosonic qubits
    Chwedenczuk, Jan
    SCIPOST PHYSICS CORE, 2022, 5 (02):
  • [27] Two-setting Bell inequalities for many qubits
    Chen, Kai
    Albeverio, Sergio
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [28] Violation of Bell's inequalities and distillability for N qubits
    Acín, A
    Scarani, V
    Wolf, MW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : L21 - L29
  • [29] The Hilbert Series of Measures of Entanglement for 4 Qubits
    Nolan R. Wallach
    Acta Applicandae Mathematica, 2005, 86 : 203 - 220
  • [30] The Hilbert series of measures of entanglement for 4 qubits
    Wallach, NR
    ACTA APPLICANDAE MATHEMATICAE, 2005, 86 (1-2) : 203 - 220