Runge-Kutta-Nystrom methods with equation dependent coefficients and reduced phase lag for oscillatory problems

被引:0
|
作者
Yang, Yanping [1 ]
You, Xiong [2 ]
Fang, Yonglei [1 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Peoples R China
[2] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Jiangsu, Peoples R China
关键词
Oscillatory problems; Equation dependent coefficient; Dispersion; Dissipation; INITIAL-VALUE-PROBLEMS; TRIGONOMETRICALLY-FITTED METHODS; SCHRODINGER-EQUATION; NUMERICAL-SOLUTION; EXPLICIT; FREQUENCY; INTEGRATION; ALGORITHMS; CHOICE; ERRORS;
D O I
10.1007/s10910-016-0685-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new family of one-parameter equation dependent Runge-Kutta-Nystrom (EDRKN) methods for the numerical solution of second-order differential equations are investigated. The coefficients of new three-stage EDRKN methods are obtained by nullifying up to appropriate order of moments of operators related to the internal and external stages. A fifth-order EDRKN method that is dispersive of order six and dissipative of order five and a fourth-order EDRKN method that is dispersive of order four and zero-dissipative are derived. Phase analysis shows that there exist no explicit EDRKN methods that are P-stable. Numerical experiments are reported to show the high accuracy and efficiency of the new EDRKN methods.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 50 条
  • [31] THE CHEBYSHEV METHODS OF PANOVSKY AND RICHARDSON AS RUNGE-KUTTA-NYSTROM METHODS
    COLEMAN, JP
    BOOTH, AS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 61 (03) : 245 - 261
  • [32] New modified Runge-Kutta-Nystrom methods for the numerical integration of the Schrodinger equation
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) : 1639 - 1647
  • [33] Order properties of symplectic Runge-Kutta-Nystrom methods
    Xiao, AG
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 569 - 582
  • [34] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [35] Exponentially fitted explicit Runge-Kutta-Nystrom methods
    Franco, JM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 1 - 19
  • [36] Starting algorithms for implicit Runge-Kutta-Nystrom methods
    Laburta, MP
    APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) : 233 - 251
  • [37] A family of explicit parallel Runge-Kutta-Nystrom methods
    Franco, J. M.
    Gomez, I.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4177 - 4191
  • [38] LOW ORDER PRACTICAL RUNGE-KUTTA-NYSTROM METHODS
    FINE, JM
    COMPUTING, 1987, 38 (04) : 281 - 297
  • [39] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [40] Revised exponentially fitted Runge-Kutta-Nystrom methods
    D'Ambrosio, R.
    Paternoster, B.
    Santomauro, G.
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 56 - 60