Integrable Lotka-Volterra systems

被引:26
|
作者
Bogoyavlenskij, O. I. [1 ,2 ]
机构
[1] Queens Univ, Dept Math, Kingston, ON K7L 3N6, Canada
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2008年 / 13卷 / 06期
关键词
Lax representation; Hamiltonian structures; Casimir functions; Riemannian surfaces; Lotka-Volterra systems; integrable lattices;
D O I
10.1134/S1560354708060051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Infinite- and finite-dimensional lattices of Lotka-Volterra type are derived that possess Lax representations and have large families of first integrals. The obtained systems are Hamiltonian and contain perturbations of Volterra lattice. Examples of Liouville-integrable 4-dimensional Hamiltonian Lotka-Volterra systems are presented. Several 5-dimensional Lotka- Volterra systems are found that have Lax representations and are Liouville-integrable on constant levels of Casimir functions.
引用
收藏
页码:543 / 556
页数:14
相关论文
共 50 条
  • [31] Evolutionary stability in Lotka-Volterra systems
    Cressman, R
    Garay, J
    JOURNAL OF THEORETICAL BIOLOGY, 2003, 222 (02) : 233 - 245
  • [32] On the liouville intergrabilty of Lotka-Volterra systems
    Damianou, Pantelis A.
    Petalidou, Fani
    FRONTIERS IN PHYSICS, 2014, 2 : 1 - 10
  • [33] Normalizable, integrable and linearizable saddle points in the Lotka-Volterra system
    Christopher C.
    Rousseau C.
    Qualitative Theory of Dynamical Systems, 2004, 5 (1) : 11 - 61
  • [34] ON THE INTEGRABILITY OF SOME GENERALIZED LOTKA-VOLTERRA SYSTEMS
    BOUNTIS, TC
    BIER, M
    HIJMANS, J
    PHYSICS LETTERS A, 1983, 97 (1-2) : 11 - 14
  • [35] Impulsive control of multiple Lotka-Volterra systems
    Dong, Lingzhen
    Takeuchi, Yasuhiro
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) : 1144 - 1154
  • [36] The persistence in a Lotka-Volterra competition systems with impulsive
    Zhen, J
    Han, M
    Li, GH
    CHAOS SOLITONS & FRACTALS, 2005, 24 (04) : 1105 - 1117
  • [37] Old and new results on Lotka-Volterra systems
    Redheffer, Raymond
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (06): : 3207 - 3213
  • [38] A PERMANENCE THEOREM FOR REPLICATOR AND LOTKA-VOLTERRA SYSTEMS
    JANSEN, W
    JOURNAL OF MATHEMATICAL BIOLOGY, 1987, 25 (04) : 411 - 422
  • [39] Accessibility properties of controlled Lotka-Volterra systems
    De Leenheer, P
    Aeyels, D
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 3977 - 3981
  • [40] COMPUTATIONAL STABILITY ANALYSIS OF LOTKA-VOLTERRA SYSTEMS
    Polcz, Peter
    Szederkenyi, Gabor
    HUNGARIAN JOURNAL OF INDUSTRY AND CHEMISTRY, 2016, 44 (02): : 113 - 120