Bose-Einstein condensation in interacting gases

被引:56
|
作者
Holzmann, M
Grüter, P
Laloë, F
机构
[1] ENS, Dept Phys, LKB, CNRS,UA 18, F-75005 Paris, France
[2] Univ Paris 06, LKB, F-75005 Paris, France
[3] ENS, Dept Phys, LPS, CNRS,UA 1306, F-75005 Paris, France
[4] Univ Paris 06, LPS, F-75005 Paris, France
[5] Univ Paris 07, LPS, F-75005 Paris, France
[6] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
EUROPEAN PHYSICAL JOURNAL B | 1999年 / 10卷 / 04期
关键词
D O I
10.1007/s100510050905
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the occurrence of a Bose-Einstein transition in a dilute gas with repulsive interactions, starting from temperatures above the transition temperature. The formalism, based on the use of Ursell operators, allows us to evaluate the one-particle density operator with more flexibility than in mean-field theories, since it does not necessarily coincide with that of an ideal gas with adjustable parameters (chemical potential, etc.). In a first step, a simple approximation is used (Ursell-Dyson approximation), which allow us to recover results which are similar to those of the usual mean-field theories. In a second step. a more precise treatment of the correlations and velocity dependence of the populations in the system is elaborated. This introduces new physical effects: such as a change of the velocity profile just above the transition: the proportion of atoms with low velocities is higher than in an ideal gas. A consequence of this distortion is an increase of the critical temperature (at constant density) of the Bose gas, in agreement with those of recent path integral Monte-Carlo calculations for hard spheres.
引用
收藏
页码:739 / 760
页数:22
相关论文
共 50 条
  • [21] Bose-Einstein condensation of ultracold atomic gases
    Ketterle, W
    Andrews, MR
    Davis, KB
    Durfee, DS
    Kurn, DM
    Mewes, MO
    vanDruten, NJ
    PHYSICA SCRIPTA, 1996, T66 : 31 - 37
  • [22] Bose-Einstein condensation in dilute atomic gases
    Arlt, JJ
    Bongs, K
    Sengstock, K
    Ertmer, W
    NATURWISSENSCHAFTEN, 2002, 89 (02) : 47 - 56
  • [23] Bose-Einstein condensation of trapped atomic gases
    Courteille, PW
    Bagnato, VS
    Yukalov, VI
    LASER PHYSICS, 2001, 11 (06) : 659 - 800
  • [24] Bose-Einstein condensation in dilute atomic gases
    Piza, AFRD
    BRAZILIAN JOURNAL OF PHYSICS, 2004, 34 (3B) : 1102 - 1157
  • [25] Bose-Einstein condensation in dilute atomic gases
    Massachusetts Inst of Technology, Cambridge, United States
    Solid State Commun, 11 (629-637):
  • [26] Bose-Einstein condensation in a mixture of interacting Bose and Fermi particles
    Poluektov, Yu M.
    Soroka, A. A.
    PHASE TRANSITIONS, 2020, 93 (06) : 537 - 560
  • [27] Proof of Bose-Einstein condensation for interacting gases with a one-particle spectral gap
    Lauwers, J
    Verbeure, A
    Zagrebnov, VA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (11): : L169 - L174
  • [28] Interacting multicomponent exciton gases in a potential trap: Phase separation and Bose-Einstein condensation
    Sobkowiak, S.
    Semkat, D.
    Stolz, H.
    Koch, Th.
    Fehske, H.
    PHYSICAL REVIEW B, 2010, 82 (06)
  • [29] A Simple Model of Bose-Einstein Condensation of Interacting Particles
    Poluektov, Yu. M.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2017, 186 (5-6) : 347 - 362
  • [30] Bose-Einstein condensation temperature of weakly interacting atoms
    Yukalov, V. I.
    Yukalova, E. P.
    LASER PHYSICS LETTERS, 2017, 14 (07) : 1 - 13