Robust Wald-type tests based on minimum Renyi pseudodistance estimators for the multiple linear regression model

被引:6
|
作者
Castilla, E. [1 ]
Martin, N. [2 ]
Munoz, S. [1 ]
Pardo, L. [1 ]
机构
[1] Univ Complutense Madrid, Dept Stat & OR, Madrid 28040, Spain
[2] Univ Complutense Madrid, Dept Financial & Actuarial Econ & Stat, Madrid, Spain
关键词
Influence function; minimum density power divergence estimator; multiple regression model; Renyi pseudodistance; robustness; LOGISTIC-REGRESSION; DIVERGENCE;
D O I
10.1080/00949655.2020.1787410
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a new family of Wald-type tests, based on minimum Renyi pseudodistance estimators, for testing general linear hypotheses and the variance of the residuals in the multiple regression model. The classical Wald test, based on the maximum likelihood estimator, can be seen as a particular case inside our family. Theoretical results, supported by an extensive simulation study, point out how some tests included in this family have a better behaviour, in the sense of robustness, than the Wald test. Finally, we provide a data-driven procedure for the choice of the optimal test given any data set.
引用
收藏
页码:2655 / 2680
页数:26
相关论文
共 50 条
  • [1] Robust approach for comparing two dependent normal populations through Wald-type tests based on Renyi's pseudodistance estimators
    Castilla, Elena
    Jaenada, Maria
    Martin, Nirian
    Pardo, Leandro
    [J]. STATISTICS AND COMPUTING, 2022, 32 (06)
  • [2] Generalized Wald-type tests based on minimum density power divergence estimators
    Basu, A.
    Mandal, A.
    Martin, N.
    Pardo, L.
    [J]. STATISTICS, 2016, 50 (01) : 1 - 26
  • [3] Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators
    Basu, Ayanendranath
    Ghosh, Abhik
    Mandal, Abhijit
    Martin, Nirian
    Pardo, Leandro
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (03): : 973 - 1005
  • [4] Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators
    Ayanendranath Basu
    Abhik Ghosh
    Abhijit Mandal
    Nirian Martin
    Leandro Pardo
    [J]. Statistical Methods & Applications, 2021, 30 : 973 - 1005
  • [5] Robust Statistical Inference in Generalized Linear Models Based on Minimum Renyi's Pseudodistance Estimators
    Jaenada, Maria
    Pardo, Leandro
    [J]. ENTROPY, 2022, 24 (01)
  • [6] Robust approach for comparing two dependent normal populations through Wald-type tests based on Rényi’s pseudodistance estimators
    Elena Castilla
    María Jaenada
    Nirian Martín
    Leandro Pardo
    [J]. Statistics and Computing, 2022, 32
  • [7] Robust Test Statistics Based on Restricted Minimum Renyi's Pseudodistance Estimators
    Jaenada, Maria
    Miranda, Pedro
    Pardo, Leandro
    [J]. ENTROPY, 2022, 24 (05)
  • [8] ROBUST WALD-TYPE TESTS OF ONE-SIDED HYPOTHESES IN THE LINEAR-MODEL
    SILVAPULLE, MJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (417) : 156 - 161
  • [9] Influence analysis of robust Wald-type tests
    Ghosh, Abhik
    Mandal, Abhijit
    Martin, Nirian
    Pardo, Leandro
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 147 : 102 - 126
  • [10] Robust Wald-type test statistics based on minimumC-divergence estimators
    Maji, Avijit
    Pardo, Leandro
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (14) : 2592 - 2613