MINIMAL ZERO-SUM SEQUENCES OF LENGTH FIVE OVER FINITE CYCLIC GROUPS

被引:0
|
作者
Peng, Jiangtao [1 ]
Li, Yuanlin [2 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[2] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
minimal zero-sum sequences; index of sequences; INDEX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite cyclic group. Every sequence S of length l over G can be written in the form S = (n(1g)) . ... . (n(lg)) where g is an element of G and n(1), ... , n(l) is an element of [1, ord(g)], and the index id(S) of S is defined to be the minimum of (n(1) + ... + n(l))/ ord(g) over all possible g is an element of G such that < g > = G. In this paper, we determine the index of any minimal zero-sum sequence S of length 5 when G = < g > is a cyclic group of a prime order and S has the form S = g(2)(n(2g))(n(3g))(n(4g)). It is shown that if G = < g > is a cyclic group of prime order p >= 31, then every minimal zero-sum sequence S of the above mentioned form has index 1 except in the case that S = g(2)(p-1/2 g)(p+3/2 g)((p - 3)g)
引用
收藏
页码:373 / 384
页数:12
相关论文
共 50 条
  • [21] Minimal zero-sum sequences over [-m, n]
    Zeng, Xiangneng
    Deng, Guixin
    JOURNAL OF NUMBER THEORY, 2019, 203 : 230 - 241
  • [22] SUBSEQUENCE SUMS OF ZERO-SUM FREE SEQUENCES OVER FINITE ABELIAN GROUPS
    Qu, Yongke
    Xia, Xingwu
    Xue, Lin
    Zhong, Qinghai
    COLLOQUIUM MATHEMATICUM, 2015, 140 (01) : 119 - 127
  • [23] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group
    Weidong Gao
    Siao Hong
    Wanzhen Hui
    Xue Li
    Qiuyu Yin
    Pingping Zhao
    Periodica Mathematica Hungarica, 2022, 85 : 52 - 71
  • [24] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group
    Gao, Weidong
    Hong, Siao
    Hui, Wanzhen
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (01) : 52 - 71
  • [25] A RECIPROCITY ON FINITE ABELIAN GROUPS INVOLVING ZERO-SUM SEQUENCES
    Han, Dongchun
    Zhang, Hanbin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 1077 - 1095
  • [26] On zero-sum sequences of prescribed length
    Gao W.
    Thangadurai R.
    aequationes mathematicae, 2006, 72 (3) : 201 - 212
  • [27] Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group II
    Gao, Weidong
    Hong, Siao
    Hui, Wanzhen
    Li, Xue
    Yin, Qiuyu
    Zhao, Pingping
    JOURNAL OF NUMBER THEORY, 2022, 241 : 738 - 760
  • [28] Zero-sum subsequences of length kq over finite abelian p-groups
    He, Xiaoyu
    DISCRETE MATHEMATICS, 2016, 339 (01) : 399 - 407
  • [29] ON THE INDEX-CONJECTURE ON LENGTH FOUR MINIMAL ZERO-SUM SEQUENCES
    Xia, Li-Meng
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1505 - 1528
  • [30] Tiny zero-sum sequences over some special groups
    Wang, Linlin
    OPEN MATHEMATICS, 2020, 18 : 820 - 828