Relative Camera Pose Estimation Using Convolutional Neural Networks

被引:102
|
作者
Melekhov, Iaroslav [1 ]
Ylioinas, Juha [1 ]
Kannala, Juho [1 ]
Rahtu, Esa [2 ]
机构
[1] Aalto Univ, Helsinki, Finland
[2] Tampere Univ Technol, Tampere, Finland
来源
ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017) | 2017年 / 10617卷
关键词
Relative camera pose estimation; Deep neural networks; Spatial pyramid pooling;
D O I
10.1007/978-3-319-70353-4_57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a convolutional neural network based approach for estimating the relative pose between two cameras. The proposed network takes RGB images from both cameras as input and directly produces the relative rotation and translation as output. The system is trained in an end-to-end manner utilising transfer learning from a large scale classification dataset. The introduced approach is compared with widely used local feature based methods (SURF, ORB) and the results indicate a clear improvement over the baseline. In addition, a variant of the proposed architecture containing a spatial pyramid pooling (SPP) layer is evaluated and shown to further improve the performance.
引用
收藏
页码:675 / 687
页数:13
相关论文
共 50 条
  • [31] Gaze estimation using convolutional neural networks
    Rawdha Karmi
    Ines Rahmany
    Nawres Khlifa
    Signal, Image and Video Processing, 2024, 18 : 389 - 398
  • [32] Camera Pose Estimation using Human Head Pose Estimation
    Fischer, Robert
    Hoedlmoser, Michael
    Gelautz, Margrit
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 877 - 886
  • [33] Vehicle Pose Estimation in WAMI Imagery via Deep Convolutional Neural Networks
    Yi, Meng
    Wang, Dong
    Yang, Fan
    Xu, Jonathan
    Cai, Yiran
    Blasch, Erik
    Sheaff, Carolyn
    Chen, Genshe
    Ling, Haibin
    PROCEEDINGS OF THE 2016 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON) AND OHIO INNOVATION SUMMIT (OIS), 2016, : 233 - 240
  • [34] Preterm infants' limb-pose estimation from depth images using convolutional neural networks
    Moccia, Sara
    Migliorelli, Lucia
    Pietrini, Rocco
    Frontoni, Emanuele
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 1 - 7
  • [35] Camera pose estimation by an artificial neural network
    Benton, Ryan G.
    Chu, Chee-hung Henry
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 604 - 611
  • [36] Camera calibration and relative pose estimation from gravity
    Sturm, PF
    Quan, L
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 72 - 75
  • [37] Classification of Objects Using Neuromorphic Camera and Convolutional Neural Networks
    Gouveia, E. B.
    Gouveia, E. L. S.
    Costa, V. T.
    Nakagawa-Silva, A.
    Soares, A. B.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 2277 - 2281
  • [38] 3D Pose Regression using Convolutional Neural Networks
    Mahendran, Siddharth
    Ali, Haider
    Vidal, Rene
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 494 - 495
  • [39] 3D Pose Regression using Convolutional Neural Networks
    Mahendran, Siddharth
    Ali, Haider
    Vidal, Rene
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2174 - 2182
  • [40] Evaluation of Camera Pose Estimation Using Human Head Pose Estimation
    Fischer R.
    Hödlmoser M.
    Gelautz M.
    SN Computer Science, 4 (3)