Effects of particle settling on Rayleigh-Benard convection

被引:30
|
作者
Oresta, Paolo [1 ,2 ,3 ]
Prosperetti, Andrea [4 ,5 ]
机构
[1] Polytech Bari, Dept Math Mech & Management, I-70126 Bari, Italy
[2] Univ Salento, Dept Engn Innovat, I-73100 Lecce, Italy
[3] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
[4] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[5] Univ Twente, Phys Fluids Grp, Dept Sci & Technol, JM Burgers Ctr Fluid Dynam, NL-7500 AE Enschede, Netherlands
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 06期
基金
美国国家科学基金会;
关键词
HEAT-TRANSFER; TURBULENT; STATISTICS;
D O I
10.1103/PhysRevE.87.063014
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effect of particles falling under gravity in a weakly turbulent Rayleigh-Benard gas flow is studied numerically. The particle Stokes number is varied between 0.01 and 1 and their temperature is held fixed at the temperature of the cold plate, of the hot plate, or the mean between these values. Mechanical, thermal, and combined mechanical and thermal couplings between the particles and the fluid are studied separately. It is shown that the mechanical coupling plays a greater and greater role in the increase of the Nusselt number with increasing particle size. A rather unexpected result is an unusual kind of reverse one-way coupling, in the sense that the fluid is found to be strongly influenced by the particles, while the particles themselves appear to be little affected by the fluid, despite the relative smallness of the Stokes numbers. It is shown that this result derives from the very strong constraint on the fluid behavior imposed by the vanishing of the mean fluid vertical velocity over the cross sections of the cell demanded by continuity.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Vapor condensation in Rayleigh-Benard convection
    Li, Min
    Zhang, Yang
    Liu, Haihu
    Wang, Yuan
    Yang, Bin
    PHYSICS OF FLUIDS, 2021, 33 (01)
  • [22] Bursting dynamics in Rayleigh-Benard convection
    Dan, Surajit
    Ghosh, Manojit
    Nandukumar, Yada
    Dana, Syamal K.
    Pal, Pinaki
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (09): : 2089 - 2099
  • [23] The turbulent regimes of Rayleigh-Benard convection
    Chavanne, X
    Chilla, F
    Castaing, B
    Chabaud, B
    Hebral, B
    Roche, P
    ADVANCES IN TURBULENCE VII, 1998, 46 : 461 - 464
  • [24] SURFACE DEFLECTION IN RAYLEIGH-BENARD CONVECTION
    JIMENEZFERNANDEZ, J
    GARCIASANZ, J
    JOURNAL DE PHYSIQUE, 1989, 50 (05): : 521 - 527
  • [25] TEMPERATURE MODULATION IN RAYLEIGH-BENARD CONVECTION
    Singh, Jitender
    Bajaj, Renu
    ANZIAM JOURNAL, 2008, 50 (02): : 231 - 245
  • [26] SPATIOTEMPORAL INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    CILIBERTO, S
    BIGAZZI, P
    PHYSICAL REVIEW LETTERS, 1988, 60 (04) : 286 - 289
  • [27] EXTERNAL MODULATION OF RAYLEIGH-BENARD CONVECTION
    NIEMELA, JJ
    DONNELLY, RJ
    PHYSICAL REVIEW LETTERS, 1987, 59 (21) : 2431 - 2434
  • [28] Asymmetries in Turbulent Rayleigh-Benard Convection
    du Puits, Ronald
    Resagk, Christian
    Thess, Andre
    PROGRESS IN TURBULENCE III, 2010, 131 : 179 - 182
  • [29] Heat flux in Rayleigh-Benard convection
    Shibata, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 352 (2-4) : 335 - 346
  • [30] ON ULTIMATE REGIME OF RAYLEIGH-BENARD CONVECTION
    Palymskiy, Igor
    COMPUTATIONAL THERMAL SCIENCES, 2015, 7 (04): : 339 - 344