Parameter estimation for SAR micromotion target based on sparse signal representation

被引:35
|
作者
Zhu, Sha [1 ,2 ]
Mohammad-Djafari, Ali [2 ]
Wang, Hongqiang [1 ]
Deng, Bin [1 ]
Li, Xiang [1 ]
Mao, Junjie [1 ]
机构
[1] Natl Univ Def Technol, Inst Spatial Elect Informat, Sch Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
[2] Univ Paris Sud, SUPELEC, UMR CNRS 8506, Lab Signaux & Syst, F-91192 Gif Sur Yvette, France
关键词
synthetic aperture radar; micromotion; sparse priors; Bayesian approach; hyperpa-rameters estimation; MICRO-DOPPLER ANALYSIS; UNCERTAINTY PRINCIPLES;
D O I
10.1186/1687-6180-2012-13
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we address the parameter estimation of micromotion targets in synthetic aperture radar (SAR), where scattering parameters and micromotion parameters of targets are coupled resulting in a nonlinear parameter estimation problem. The conventional methods address this nonlinear problem by matched filter, which are computationally expensive and of lower resolutions. In contrast, we address this problem by linearizing the forward model as a linear combination of elements of an over-complete dictionary. The essential idea of sparse signal representation models comes from the fact that SAR micromotion targets are sparsely distributed in the observation scene. Accordingly, we propose to jointly estimate the target micromotion and scattering parameters via a Bayesian approach with sparsity-inducing priors. In addition, we present a variational approximation framework for Bayesian computation. Numerical simulations demonstrate the proposed sparsity-inducing reconstruction method achieves higher resolution and better performance with smaller measures compared to conventional methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] SAR Target Recognition Based on Joint Sparse Representation of Complementary Features
    Cheng, Bo
    Ma, Xiaoxiao
    Liang, Chenbin
    2018 INTERNATIONAL CONFERENCE ON SENSORS, SIGNAL AND IMAGE PROCESSING (SSIP 2018), 2018, : 29 - 34
  • [22] Joint Sparse Representation based Automatic Target Recognition in SAR Images
    Zhang, Haichao
    Nasrabadi, Nasser M.
    Huang, Thomas S.
    Zhang, Yanning
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XVIII, 2011, 8051
  • [23] Parametric Sparse Representation Method for Motion Parameter Estimation of Ground Moving Target
    Gu, Fu-Fei
    Zhang, Qun
    Chen, Yi-Chang
    Huo, Wen-Jun
    Ni, Jia-Cheng
    IEEE SENSORS JOURNAL, 2016, 16 (21) : 7646 - 7652
  • [24] A Sparse Representation and GTD Model Parameter Estimation Based Multiband Radar Signal Coherent Compensation Method
    Zou, Yongqiang
    Gao, Xunzhang
    Li, Xiang
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
  • [25] Signal parameter estimation for sparse arrays
    Kennett, BLN
    Brown, DJ
    Sambridge, M
    Tarlowski, C
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2003, 93 (04) : 1765 - 1772
  • [26] Radar Signal Parameter Estimation with Sparse
    Xu, Danlei
    Du, Lan
    Liu, Hongwei
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2014, : 123 - 128
  • [27] sparse signal representation based DOA estimation with small aperture
    Wang, Qianli
    Li, Zhi
    Zhao, Zhiqin
    Jiang, Wei
    2018 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT2018), 2018,
  • [28] Variable Parameter Estimation of SAR Signal Based on Compression Sensing
    Gao, Shuai
    Xu, Huaping
    Qiu, Xue
    Yang, Bo
    2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 619 - 623
  • [29] The Influence of Target Micromotion on SAR and GMTI
    Li, Xiang
    Deng, Bin
    Qin, Yuliang
    Wang, Hongqiang
    Li, Yanpeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (07): : 2738 - 2751
  • [30] SAR target recognition under the framework of sparse representation
    Cheng, Jian
    Li, Lan
    Wang, Hai-Xu
    Cheng, Jian, 1600, Univ. of Electronic Science and Technology of China (43): : 524 - 529