Strain Measurement in Semiconductor Heterostructures by Scanning Transmission Electron Microscopy

被引:58
|
作者
Mueller, Knut [1 ]
Rosenauer, Andreas [1 ]
Schowalter, Marco [1 ]
Zweck, Josef [2 ]
Fritz, Rafael [2 ]
Volz, Kerstin [3 ,4 ]
机构
[1] Univ Bremen, Inst Festkorperphys, D-28359 Bremen, Germany
[2] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[3] Univ Marburg, Fac Phys, D-35032 Marburg, Germany
[4] Univ Marburg, Mat Sci Ctr, D-35032 Marburg, Germany
关键词
strain measurement; electron diffraction; TEM; CBED; STEM; semiconductors; LAYERS; QUANTIFICATION; ERROR;
D O I
10.1017/S1431927612001274
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article deals with the measurement of strain in semiconductor heterostructures from convergent beam electron diffraction patterns. In particular, three different algorithms in the field of (circular) pattern recognition are presented that are able to detect diffracted disc positions accurately, from which the strain in growth direction is calculated. Although the three approaches are very different as one is based on edge detection, one on rotational averages, and one on cross correlation with masks, it is found that identical strain profiles result for an InxGa1-xNyAs1-y/GaAs heterostructure consisting of five compressively and tensile strained layers. We achieve a precision of strain measurements of 7-9.10(-4) and a spatial resolution of 0.5-0.7 nm over the whole width of the layer stack which was 350 nm. Being already very applicable to strain measurements in contemporary nanostructures, we additionally suggest future hardware and software designs optimized for fast and direct acquisition of strain distributions, motivated by the present studies.
引用
收藏
页码:995 / 1009
页数:15
相关论文
共 50 条
  • [21] Measurement of displacement and strain by high-resolution transmission electron microscopy
    Hÿtch, MJ
    STRESS AND STRAIN IN EPITAXY: THEORETICAL CONCEPTS, MEASUREMENTS AND APPLICATIONS, 2001, : 201 - 219
  • [23] Introduction to transmission and scanning electron microscopy
    Verni, F
    Gabrielli, S
    FROM CELLS TO PROTEINS: IMAGING NATURE ACROSS DIMENSIONS, 2005, 3 : 23 - 35
  • [24] Cross-Sectional Scanning Tunneling Microscopy of Semiconductor Heterostructures
    Edward T. Yu
    MRS Bulletin, 1997, 22 : 22 - 26
  • [25] COMPRESSIVE SCANNING TRANSMISSION ELECTRON MICROSCOPY
    Nicholls, D.
    Robinson, A.
    Wells, J.
    Moshtaghpour, A.
    Bahri, M.
    Kirkland, A.
    Browning, N.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1586 - 1590
  • [26] TRANSMISSION AND SCANNING ELECTRON MICROSCOPY OF ENDOSPORITES
    BRACK, SD
    TAYLOR, TN
    AMERICAN JOURNAL OF BOTANY, 1970, 57 (06) : 756 - &
  • [27] Lattice Strain Measurement of Core@Shell Electrocatalysts with 4D Scanning Transmission Electron Microscopy Nanobeam Electron Diffraction
    Mukherjee, Debangshu
    Gamler, Jocelyn T. L.
    Skrabalak, Sara E.
    Unocic, Raymond R.
    ACS CATALYSIS, 2020, 10 (10): : 5529 - 5541
  • [28] Ballistic-electron-emission microscopy of semiconductor heterostructures
    Bell, LD
    Narayanamurti, V
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1998, 3 (01): : 38 - 44
  • [29] Scanning electron acoustic microscopy of semiconductor materials
    Li, SW
    Jiang, FM
    Yin, QR
    Jin, YX
    SOLID STATE COMMUNICATIONS, 1996, 99 (11) : 853 - 857
  • [30] SCANNING ELECTRON-MICROSCOPY IN SEMICONDUCTOR RESEARCH
    HEYDENREICH, J
    SCANNING, 1993, 15 (06) : 315 - 315