Li7La3Zr2O12-Based Solid Electrolytes Codoped with Ta5+ and Al3+ Ions for Lithium Power Sources

被引:2
|
作者
Il'ina, E. A. [1 ]
Lyalin, E. D. [1 ]
Antonov, B. D. [1 ]
Pankratov, A. A. [1 ]
机构
[1] Russian Acad Sci, Inst High Temp Electrochem, Ural Branch, Ekaterinburg 620990, Russia
基金
俄罗斯基础研究基金会;
关键词
solid electrolyte; Li7La3Zr2O12; sol-gel synthesis; Li anode; lithium-ion conductivity; electrochemical impedance; LI+ CONDUCTIVITY; LI-7-XLA3ZR2-XTAXO12; STATE;
D O I
10.1134/S1070427222050093
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Li7La3Zr2O12-based compounds are today the most promising solid electrolytes for high-energy lithium and lithium-ion power sources. The solid electrolytes Li7-x-3yAlyLa3Zr2-xTaxO12 (x = 0.3-0.6, y = 0.05-0.20) were prepared by the sol-gel method. The effect of doping of Li7La3Zr2O12 in Zr and Li sublattices with tantalum (Ta5+) and aluminum (Al3+) on the crystal structure, morphology, and electrical conductivity of this compound was examined. The compounds obtained had the cubic structure (space group Ia-3d). The resistance of the solid electrolytes obtained was determined by the electrochemical impedance method. The compounds Li6.25Al0.15La3Zr1.7Ta0.3O12, Li6.3Al0.10La3Zr1.6Ta0.4O12, Li6.2Al0.10La3Zr1.5Ta0.5O12, and Li6.25Al0.05La3Zr1.4Ta0.6O12 have the maximal lithium-ion conductivity (similar to 2.0 x 10(-4) S cm(-1) at 20 degrees C). The heat treatment at 1150 degrees C for 1 h is optimum for forming highly conducting and dense ceramic membranes. Symmetrical cells with Li electrodes show stable behavior in cycling. The solid electrolytes obtained can be used in lithium power sources.
引用
收藏
页码:689 / 697
页数:9
相关论文
共 50 条
  • [31] Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12
    Allen, J. L.
    Wolfenstine, J.
    Rangasamy, E.
    Sakamoto, J.
    JOURNAL OF POWER SOURCES, 2012, 206 : 315 - 319
  • [32] In situ atomic scale investigation of Li7La3Zr2O12-based Li+-conducting solid electrolyte during calcination growth
    Huang, Chih-Yang
    Tseng, Yi-Tang
    Lo, Hung-Yang
    Chang, Jeng-Kuei
    Wu, Wen-Wei
    NANO ENERGY, 2020, 71
  • [33] The surface behaviour of an Al-Li7La3Zr2O12 solid electrolyte
    Bai, Lixiong
    Xue, Wendong
    Li, Yan
    Liu, Xiaoguang
    Li, Yong
    Sun, Jialin
    CERAMICS INTERNATIONAL, 2017, 43 (17) : 15805 - 15810
  • [34] An ion-conductive Li7La3Zr2O12-based composite membrane for dendrite-free lithium metal batteries
    Zhang, Wenqiang
    Yi, Qiang
    Li, Shuyuan
    Sun, Chunwen
    JOURNAL OF POWER SOURCES, 2020, 450
  • [35] An all-solid-state lithium battery using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 ceramic enhanced polyethylene oxide electrolytes with superior electrochemical performance
    Zhang, Zheng
    Huang, Ying
    Gao, Heng
    Huang, Jiaxin
    Li, Chao
    Liu, Panbo
    CERAMICS INTERNATIONAL, 2020, 46 (08) : 11397 - 11405
  • [36] The construction of concentration gradient inducing low resistance for Li7La3Zr2O12-based thermal battery
    Yang, Min
    Fu, Licai
    Zhu, Jiajun
    Yang, Wulin
    Zhou, Lingping
    Chemical Engineering Journal, 2024, 497
  • [37] Li7La3Zr2O12 Ceramic Nanofiber-Incorporated Solid Polymer Electrolytes for Flexible Lithium Batteries
    Zhang, Wei
    Wang, Xuewen
    Zhang, Qi
    Wang, Lixiang
    Xu, Zhiyong
    Li, Yang
    Huang, Shaoming
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) : 5238 - 5246
  • [38] Solid-state lithium battery with garnet Li7La3Zr2O12 nanofibers composite polymer electrolytes
    Wang, Yifei
    Liu, Tao
    Liu, Chuwei
    Liu, Guoqiang
    Yu, Jingkun
    Zou, Qingjie
    SOLID STATE IONICS, 2022, 378
  • [39] Lithium ion conduction in Li5La3Ta2O12 and Li7La3Ta2O13 garnet-type materials
    C. R. Mariappan
    K. I. Gnanasekar
    V. Jayaraman
    T. Gnanasekaran
    Journal of Electroceramics, 2013, 30 : 258 - 265
  • [40] Lithium ion conduction in Li5La3Ta2O12 and Li7La3Ta2O13 garnet-type materials
    Mariappan, C. R.
    Gnanasekar, K. I.
    Jayaraman, V.
    Gnanasekaran, T.
    JOURNAL OF ELECTROCERAMICS, 2013, 30 (04) : 258 - 265