Li7La3Zr2O12-Based Solid Electrolytes Codoped with Ta5+ and Al3+ Ions for Lithium Power Sources

被引:2
|
作者
Il'ina, E. A. [1 ]
Lyalin, E. D. [1 ]
Antonov, B. D. [1 ]
Pankratov, A. A. [1 ]
机构
[1] Russian Acad Sci, Inst High Temp Electrochem, Ural Branch, Ekaterinburg 620990, Russia
基金
俄罗斯基础研究基金会;
关键词
solid electrolyte; Li7La3Zr2O12; sol-gel synthesis; Li anode; lithium-ion conductivity; electrochemical impedance; LI+ CONDUCTIVITY; LI-7-XLA3ZR2-XTAXO12; STATE;
D O I
10.1134/S1070427222050093
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Li7La3Zr2O12-based compounds are today the most promising solid electrolytes for high-energy lithium and lithium-ion power sources. The solid electrolytes Li7-x-3yAlyLa3Zr2-xTaxO12 (x = 0.3-0.6, y = 0.05-0.20) were prepared by the sol-gel method. The effect of doping of Li7La3Zr2O12 in Zr and Li sublattices with tantalum (Ta5+) and aluminum (Al3+) on the crystal structure, morphology, and electrical conductivity of this compound was examined. The compounds obtained had the cubic structure (space group Ia-3d). The resistance of the solid electrolytes obtained was determined by the electrochemical impedance method. The compounds Li6.25Al0.15La3Zr1.7Ta0.3O12, Li6.3Al0.10La3Zr1.6Ta0.4O12, Li6.2Al0.10La3Zr1.5Ta0.5O12, and Li6.25Al0.05La3Zr1.4Ta0.6O12 have the maximal lithium-ion conductivity (similar to 2.0 x 10(-4) S cm(-1) at 20 degrees C). The heat treatment at 1150 degrees C for 1 h is optimum for forming highly conducting and dense ceramic membranes. Symmetrical cells with Li electrodes show stable behavior in cycling. The solid electrolytes obtained can be used in lithium power sources.
引用
收藏
页码:689 / 697
页数:9
相关论文
共 50 条
  • [1] Li7La3Zr2O12-Based Solid Electrolytes Codoped with Ta5+ and Al3+ Ions for Lithium Power Sources
    E. A. Il’ina
    E. D. Lyalin
    B. D. Antonov
    A. A. Pankratov
    Russian Journal of Applied Chemistry, 2022, 95 : 689 - 697
  • [2] Electrochemical properties of Li7La3Zr2O12-based solid state battery
    Ahn, Cheol-Woo
    Choi, Jong-Jin
    Ryu, Jungho
    Hahn, Byung-Dong
    Kim, Jong-Woo
    Yoon, Woon-Ha
    Choi, Joon-Hwan
    Lee, Jong-Sook
    Park, Dong-Soo
    JOURNAL OF POWER SOURCES, 2014, 272 : 554 - 558
  • [3] Lithium stoichiometry of solid electrolytes based on tetragonal Li7La3Zr2O12
    Il'ina, E. A.
    Raskovalov, A. A.
    Shevelin, P. Y.
    Voronin, V. I.
    Berger, I. F.
    Zhyravlev, N. A.
    MATERIALS RESEARCH BULLETIN, 2014, 53 : 32 - 37
  • [4] Ta5+掺杂Li7La3Zr2O12的合成及其性能研究
    彭峰峰
    李世友
    耿彤彤
    李春雷
    曾双威
    电化学, 2020, 26 (02) : 308 - 314
  • [5] A novel densification model for sintering Li7La3Zr2O12-based solid electrolytes for all solid-state Li-ion batteries
    Kamil Burak Dermenci
    Servet Turan
    Ionics, 2020, 26 : 4757 - 4762
  • [6] A novel densification model for sintering Li7La3Zr2O12-based solid electrolytes for all solid-state Li-ion batteries
    Dermenci, Kamil Burak
    Turan, Servet
    IONICS, 2020, 26 (09) : 4757 - 4762
  • [7] Recent advances in in situ and operando characterization techniques for Li7La3Zr2O12-based solid-state lithium batteries
    Zhang, Lei
    Fan, Huilin
    Dang, Yuzhen
    Zhuang, Quanchao
    Arandiyan, Hamidreza
    Wang, Yuan
    Cheng, Ningyan
    Sun, Hongyu
    Perez Garza, H. Hugo
    Zheng, Runguo
    Wang, Zhiyuan
    S. Mofarah, Sajjad
    Koshy, Pramod
    Bhargava, Suresh K.
    Cui, Yanhua
    Shao, Zongping
    Liu, Yanguo
    MATERIALS HORIZONS, 2023, 10 (05) : 1479 - 1538
  • [8] Perspectives on Li Dendrite Penetration in Li7La3Zr2O12-Based Solid-State Electrolytes and Batteries: Materials, Interfaces, and Charge Transfer
    Biao, Jie
    Bai, Chen
    Ma, Jiabin
    Liu, Ming
    Kang, Feiyu
    Cao, Yidan
    He, Yan-Bing
    ADVANCED ENERGY MATERIALS, 2024, 14 (10)
  • [9] Stability of composite electrolytes based on Li7La3Zr2O12 to metallic lithium
    E. A. Il’ina
    K. V. Druzhinin
    B. D. Antonov
    Ionics, 2020, 26 : 163 - 172
  • [10] Stability of composite electrolytes based on Li7La3Zr2O12 to metallic lithium
    Il'ina, E. A.
    Druzhinin, K. V.
    Antonov, B. D.
    IONICS, 2020, 26 (01) : 163 - 172