Canonical corrections of Finsler metrics and Finslerian connections on Riemannian metrics

被引:6
|
作者
Vargas, JG
Torr, DG
机构
[1] UNIV ALABAMA,DEPT PHYS,HUNTSVILLE,AL 35899
[2] UNIV ALABAMA,CTR SPACE PLASMA & AERONOM RES,HUNTSVILLE,AL 35899
关键词
D O I
10.1007/BF02105087
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A concept of canonical connection of a Finsler metric is developed. Connections that are compatible with Finsler metrics are compared with the canonical connection itself. They are also compared with the corresponding Cartan connection. A necessary and sufficient condition on metric Finsler connections is given for the metric to be Riemannian. This study unearths different ways in which Finsler geometry could be used to generalize the theory of general relativity.
引用
收藏
页码:451 / 469
页数:19
相关论文
共 50 条
  • [11] On a class of Riemannian metrics arising from Finsler structures
    Tayebi, Akbar
    Peyghan, Esmaeil
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) : 319 - 322
  • [12] A potential generalization of some canonical Riemannian metrics
    Giovanni Catino
    Paolo Mastrolia
    Annals of Global Analysis and Geometry, 2019, 55 : 719 - 748
  • [13] A potential generalization of some canonical Riemannian metrics
    Catino, Giovanni
    Mastrolia, Paolo
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (04) : 719 - 748
  • [14] Einstein Finsler metrics and killing vector fields on Riemannian manifolds
    Cheng XinYue
    Shen ZhongMin
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (01) : 83 - 98
  • [15] Finsler warped product metrics with special Riemannian curvature properties
    Huaifu Liu
    Xiaohuan Mo
    Hongzhen Zhang
    Science China Mathematics, 2020, 63 (07) : 1391 - 1408
  • [16] Einstein Finsler metrics and Killing vector fields on Riemannian manifolds
    CHENG XinYue
    SHEN ZhongMin
    Science China Mathematics, 2017, 60 (01) : 83 - 98
  • [17] Einstein Finsler metrics and killing vector fields on Riemannian manifolds
    XinYue Cheng
    ZhongMin Shen
    Science China Mathematics, 2017, 60 : 83 - 98
  • [18] Finsler warped product metrics with special Riemannian curvature properties
    Liu, Huaifu
    Mo, Xiaohuan
    Zhang, Hongzhen
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (07) : 1391 - 1408
  • [19] Finsler warped product metrics with special Riemannian curvature properties
    Huaifu Liu
    Xiaohuan Mo
    Hongzhen Zhang
    Science China Mathematics, 2020, 63 : 1391 - 1408
  • [20] Finsler metrics and semi-symmetric compatible linear connections
    Vincze, Csaba
    Olah, Mark
    JOURNAL OF GEOMETRY, 2022, 113 (03)