Catabolism of linamarin in cassava (Manihot esculenta crantz)

被引:7
|
作者
Elias, M
Nambisan, B
Sudhakaran, PR
机构
[1] UNIV KERALA,DEPT BIOCHEM,TRIVANDRUM 695581,KERALA,INDIA
[2] CENT TUBER CORPS RES INST,TRIVANDRUM 695017,KERALA,INDIA
关键词
linamarin; alpha-hydroxy-nitrile-lyase; beta-cyanoalanine synthase; beta-cyanoalanine hydrolase; asparaginase;
D O I
10.1016/S0168-9452(97)00100-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The catabolism of cyanoglucoside linamarin in cassava was examined by studying the activity and kinetic characteristics of various enzymes involved in these reactions in different tissues. Hydroxy-nitrile-lyase (HNLyase) which catalysed hydrolysis of acetone cyanohydrin to cyanide at pH 5.5 was present in leaf, rind and tuber and showed maximum activity in leaves. It followed a complex saturation kinetics and has a high K-m value (30-50 mM). While rhodanese and thiocyanate levels are very low, significant activity of different enzymes of beta-cyanoalanine pathway for utilisation of cyanide was found in leaf, rind and tuber tissues. beta-cyanoalanine hydrolase which converts beta-cyanoalanine to asparagine showed maximum activity in tuber when compared to leaf and rind, similar to that reported for beta-cyanoalanine synthase. Significantly lower activity of asparaginase in tuber and its high K-m, value (500-625 mM) suggest that asparagine may accumulate in tuber while in leaf and rind it gets hydrolysed to ammonia. While the degradation of linamarin to cyanide occurs at acidic pH 5-6, the beta-cyanoalanine pathway operates at alkaline pH 8-9 suggesting a compartmentalisation of these two processes. (C) 1997 Elsevier Science Ireland Ltd.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 50 条
  • [31] New aspects in pathogenesis of konzo:: neural cell damage directly caused by linamarin contained in cassava (Manihot esculenta Crantz)
    Sreeja, VG
    Nagahara, N
    Li, Q
    Minami, M
    BRITISH JOURNAL OF NUTRITION, 2003, 90 (02) : 467 - 472
  • [32] The primary gene pool of cassava (Manihot esculenta Crantz subspecies esculenta, Euphorbiaceae)
    A.C. Allem
    R.A. Mendes
    A.N. Salomão
    M.L. Burle
    Euphytica, 2001, 120 : 127 - 132
  • [33] Anatomical alterations due to polyploidy in cassava, Manihot esculenta Crantz
    Nassar, Nagib M. A.
    Graciano-Ribeiro, D.
    Fernandes, S. D. C.
    Araujo, P. C.
    GENETICS AND MOLECULAR RESEARCH, 2008, 7 (02): : 276 - 283
  • [34] THE LIPIDS OF YOUNG CASSAVA (MANIHOT-ESCULENTA, CRANTZ) LEAVES
    KHOR, HT
    TAN, HL
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 1981, 32 (04) : 399 - 402
  • [35] OPTIMIZATION OF TRANSIENT TRANSFORMATION IN CASSAVA (MANIHOT-ESCULENTA, CRANTZ)
    ARIASGARZON, DI
    GELVIN, S
    SAYRE, RT
    PLANT PHYSIOLOGY, 1995, 108 (02) : 152 - 152
  • [36] Somatic embryogenesis in two cassava (Manihot esculenta Crantz) genotypes
    Yelli, Fitri
    Titin, Agustin
    Utomo, Setyo Dwi
    Pathak, Ashutosh
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2023, 51 (01)
  • [37] Screening of Starch Quality Traits in Cassava (Manihot esculenta Crantz)
    Sanchez, Teresa
    Salcedo, Enna
    Ceballos, Hernan
    Dufour, Dominique
    Mafla, Graciela
    Morante, Nelson
    Calle, Fernando
    Perez, Juan C.
    Debouck, Daniel
    Jaramillo, Gustavo
    Ximena Moreno, Isabel
    STARCH-STARKE, 2009, 61 (01): : 12 - 19
  • [38] Cyanide in the leaves and cassava leaves flour (Manihot esculenta Crantz)
    Wobeto, Carmen
    Correa, Angelita D.
    de Abreu, Celeste M. P.
    dos Santos, Custodio D.
    CIENCIA E AGROTECNOLOGIA, 2004, 28 (05): : 1115 - 1118
  • [39] EMODELING OF DRYING KINETICS OF CASSAVA BAGGASE (Manihot esculenta Crantz)
    Salcedo-Mendoza, J. G.
    Contreras-Lozano, K.
    Garcia-Lopez, A.
    Fernandez-Quintero, A.
    REVISTA MEXICANA DE INGENIERIA QUIMICA, 2016, 15 (03): : 883 - 891
  • [40] Characterization of sucrose uptake system in cassava (Manihot esculenta Crantz)
    Eksittikul, T
    Chulavatnatol, M
    Limpaseni, T
    PLANT SCIENCE, 2001, 160 (04) : 733 - 737