Proving isomorphism of first-order logic proof systems in HOL

被引:0
|
作者
Mikhajlova, A [1 ]
von Wright, J [1 ]
机构
[1] Abo Akad Univ, Turku Ctr Comp Sci, FIN-20520 Turku, Finland
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove in HOL that three proof systems for classical first-order predicate logic, the Hilbertian axiomatization, the system of natural deduction, and a variant of sequent calculus, are isomorphic. The isomorphism is in the sense that provability of a conclusion from hypotheses in one of these proof systems is equivalent to provability of this conclusion from the same hypotheses in the others. Proving isomorphism of these three proof systems allows us to guarantee that meta-logical provability properties about one of them would also hold in relation to the others. We prove the deduction, monotonicity, and compactness theorems for Hilbertian axiomatization, and the substitution theorem for the system of natural deduction. Then we show how these properties Can be translated between the proof systems; Besides, by proving a theorem which states that provability in flattened sequent calculus implies provability in standard sequent calculus, we show how some meta-logical provability results about Hilbertian axiomatization and natural deduction can be translated to sequent calculus. We use higher-order logic as the metalogic for reasoning about first-order proof systems and formalize proofs in a theorem-proving environment, thereupon reducing susceptibility to errors and bringing up subtle issues which are usually overlooked when the reasoning is done in a natural language.
引用
收藏
页码:295 / 314
页数:20
相关论文
共 50 条
  • [31] A First-Order Logic with Frames
    Murali, Adithya
    Pena, Lucas
    Loeding, Christof
    Madhusudan, P.
    PROGRAMMING LANGUAGES AND SYSTEMS ( ESOP 2020): 29TH EUROPEAN SYMPOSIUM ON PROGRAMMING, 2020, 12075 : 515 - 543
  • [32] Extended First-Order Logic
    Brown, Chad E.
    Smolka, Gert
    THEOREM PROVING IN HIGHER ORDER LOGICS, PROCEEDINGS, 2009, 5674 : 164 - 179
  • [33] FIRST-ORDER HOMOTOPICAL LOGIC
    Helfer, Joseph
    JOURNAL OF SYMBOLIC LOGIC, 2023,
  • [34] First-Order Logic with Adverbs
    Haze, Tristan Grotvedt
    LOGIC AND LOGICAL PHILOSOPHY, 2024, 33 (02) : 289 - 324
  • [35] GEOMETRISATION OF FIRST-ORDER LOGIC
    Dyckhoff, Roy
    Negri, Sara
    BULLETIN OF SYMBOLIC LOGIC, 2015, 21 (02) : 123 - 163
  • [36] First-Order Logic of Change
    Swietorzecka, Kordula
    LOGIC JOURNAL OF THE IGPL, 2024, 32 (01) : 35 - 46
  • [37] Coherentisation of First-Order Logic
    Dyckhoff, Roy
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS (TABLEAUX 2015), 2015, 9323
  • [38] FIRST-ORDER LOGIC OF TERMS
    SVENONIU.L
    JOURNAL OF SYMBOLIC LOGIC, 1973, 38 (02) : 177 - 188
  • [39] First-order logic: An introduction
    Adler, JE
    JOURNAL OF PHILOSOPHY, 2000, 97 (10): : 577 - 580
  • [40] First-order intensional logic
    Fitting, M
    ANNALS OF PURE AND APPLIED LOGIC, 2004, 127 (1-3) : 171 - 193