GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method

被引:203
|
作者
Chen, Wei [1 ]
Xie, Xiaoshen [1 ]
Peng, Jianbing [2 ]
Shahabi, Himan [3 ]
Hong, Haoyuan [4 ,5 ,6 ]
Dieu Tien Bui [7 ]
Duan, Zhao [1 ,8 ]
Li, Shaojun [9 ]
Zhu, A-Xing [4 ,5 ,6 ]
机构
[1] Xian Univ Sci & Technol, Coll Geol & Environm, Xian 710054, Shaanxi, Peoples R China
[2] Changan Univ, Dept Geol Engn, Xian 710054, Shaanxi, Peoples R China
[3] Univ Kurdistan, Fac Nat Resources, Dept Geomorphol, Sanandaj, Iran
[4] Nanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
[5] State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Jiangsu, Peoples R China
[6] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
[7] Univ Coll Southeast Norway, Dept Business & IT, Geog Informat Syst Grp, Gullringvegen 36, N-3800 Bo I Telemark, Norway
[8] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Pro, Chengdu, Sichuan, Peoples R China
[9] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Hubei, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Landslide; Statistical Index; Certainty Factor; Index of Entropy; Random Forest; LOGISTIC-REGRESSION MODELS; SUPPORT VECTOR MACHINES; INFERENCE SYSTEM ANFIS; DATA MINING TECHNIQUES; HOA BINH PROVINCE; SPATIAL PREDICTION; FREQUENCY RATIO; CERTAINTY FACTOR; DIFFERENTIAL EVOLUTION; HIERARCHY PROCESS;
D O I
10.1016/j.catena.2018.01.012
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Taibai County is a mountainous area in China, where rainfall-induced landslides occur frequently. The purpose of this study is to assess landslide susceptibility using the integrated Random Forest (RF) with bivariate Statistical Index (SI), the Certainty Factor (CF), and Index of Entropy (IDE). For this purpose, a total of 212 landslides for the study area were identified and collected. Of these landslides, 70% (148) were selected randomly for building the models and the other landslides (64) were used for validating the models. Accordingly, 12 landslide conditioning factors were considered that involve altitude, slope angle, plan curvature, profile curvature, slope aspect, distance to roads, distance to faults, distance to rivers, rainfall, NDVI, land use, and lithology. Then, the spatial correlation between conditioning factors and landslides was analysed using the RF method to quantify the predictive ability of these factors. In the next step, three landslide models, the RF-SI, RF-CF and RF-IOE, were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) and statistical measures such as the kappa index, positive predictive rates, negative predictive rates, sensitivity, specificity, and accuracy were employed to validate and compare the predictive capability of the three models. Of the models, the RF-CF model has the highest positive predictive rate, specificity, accuracy, kappa index and AUC values of 0.838, 0.824, 0.865, 0.730 and 0.925 for the training data, and the highest positive predictive rate, negative predictive rate, sensitivity, specificity, accuracy, kappa index and AUC values of 0.896, 0.934, 0.938, 0.891, 0.914, 0.828, and 0.946 for the validation data, respectively. In general, the RF-CF model produced an optimized balance in terms of AUC values and statistical measures.
引用
收藏
页码:135 / 149
页数:15
相关论文
共 50 条
  • [41] GIS-based landslide susceptibility mapping using hybrid integration approaches of fractal dimension with index of entropy and support vector machine
    ZHANG Ting-yu
    HAN Ling
    ZHANG Heng
    ZHAO Yong-hua
    LI Xi-an
    ZHAO Lei
    Journal of Mountain Science, 2019, 16 (06) : 1275 - 1293
  • [42] GIS-based landslide susceptibility mapping using hybrid integration approaches of fractal dimension with index of entropy and support vector machine
    Zhang Ting-yu
    Han Ling
    Zhang Heng
    Zhao Yong-hua
    Li Xi-an
    Zhao Lei
    JOURNAL OF MOUNTAIN SCIENCE, 2019, 16 (06) : 1275 - 1288
  • [43] Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison
    Rahmati, Omid
    Haghizadeh, Ali
    Pourghasemi, Hamid Reza
    Noormohamadi, Farhad
    NATURAL HAZARDS, 2016, 82 (02) : 1231 - 1258
  • [44] Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison
    Omid Rahmati
    Ali Haghizadeh
    Hamid Reza Pourghasemi
    Farhad Noormohamadi
    Natural Hazards, 2016, 82 : 1231 - 1258
  • [45] Landslide Susceptibility Mapping Using GIS-Based Data Mining Algorithms
    Vakhshoori, Vali
    Pourghasemi, Hamid Reza
    Zare, Mohammad
    Blaschke, Thomas
    WATER, 2019, 11 (11)
  • [46] GIS-BASED LANDSLIDE SUSCEPTIBILITY ANALYSIS USING MACHINE LEARNING ALGORITHMS
    Sharma, Ankur
    Sandhu, Har Amrit Singh
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3038 - 3041
  • [47] GIS-based landslide susceptibility modeling using data mining techniques
    Xia, Liheng
    Shen, Jianglong
    Zhang, Tingyu
    Dang, Guangpu
    Wang, Tao
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [48] Enhanced landslide susceptibility zonation using GIS-Based ensemble techniques
    Ankur Sharma
    Har Amrit Singh Sandhu
    Claudia Cherubini
    Environmental Earth Sciences, 2025, 84 (1)
  • [49] Impact Assessment of Road Construction on Landslide Susceptibility in Mountainous Region using GIS-Based Statistical Modelling
    Amol Sharma
    Chander Prakash
    Journal of the Geological Society of India, 2023, 99 : 1131 - 1140
  • [50] Impact Assessment of Road Construction on Landslide Susceptibility in Mountainous Region using GIS-Based Statistical Modelling
    Sharma, Amol
    Prakash, Chander
    JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 2023, 99 (08) : 1131 - 1140