Parallel Multi-splitting Proximal Method for Star Networks

被引:0
|
作者
Wei, Ermin [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60202 USA
关键词
ALGORITHM; CONSENSUS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a parallel algorithm based on proximal method to solve the problem of minimizing summation of convex (not necessarily smooth) functions over a star network. We show that this method converges to an optimal solution for any choice of constant stepsize for convex objective functions. Under further assumption of Lipschitz-gradient and strong convexity of objective functions, the method converges linearly.
引用
收藏
页码:4341 / 4346
页数:6
相关论文
共 50 条
  • [41] A multi-block alternating direction method with parallel splitting for decentralized consensus optimization
    Qing Ling
    Min Tao
    Wotao Yin
    Xiaoming Yuan
    EURASIP Journal on Wireless Communications and Networking, 2012
  • [42] A multi-block alternating direction method with parallel splitting for decentralized consensus optimization
    Ling, Qing
    Tao, Min
    Yin, Wotao
    Yuan, Xiaoming
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2012,
  • [43] Superlinear convergence of asynchronous multi-splitting waveform relaxation methods applied to a system of nonlinear ordinary differential equations
    El-Kyal, M.
    Machmoum, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 77 (2-3) : 179 - 188
  • [44] A proximal Peaceman–Rachford splitting method for compressive sensing
    Sun M.
    Liu J.
    Journal of Applied Mathematics and Computing, 2016, 50 (1-2) : 349 - 363
  • [45] Convergence of a splitting inertial proximal method for monotone operators
    Moudafi, A
    Oliny, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) : 447 - 454
  • [46] Multi-splitting Waveform Relaxation Methods for Solving the Initial Value Problem of Linear Integral-Differential-Algebraic Equations
    Lin, Xiaolin
    Sang, Yuan
    Wei, Hong
    Liu, Liming
    Wang, Yumei
    Lu, Ronghui
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 1763 - +
  • [47] A Multi-Step Inertial Proximal Peaceman-Rachford Splitting Method for Separable Convex Programming
    Li, Hongyan
    Yu, Dongmei
    Gao, Leifu
    IEEE ACCESS, 2023, 11 : 30859 - 30872
  • [48] A Parallel Splitting Method for Separable Convex Programs
    Wang, K.
    Han, D. R.
    Xu, L. L.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) : 138 - 158
  • [49] A Parallel Splitting Method for Separable Convex Programs
    K. Wang
    D. R. Han
    L. L. Xu
    Journal of Optimization Theory and Applications, 2013, 159 : 138 - 158
  • [50] A PARALLEL SPLITTING METHOD FOR COUPLED MONOTONE INCLUSIONS
    Attouch, Hedy
    Briceno-Arias, Luis M.
    Combettes, Patrick L.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (05) : 3246 - 3270