3D PiC code simulations for a laboratory experimental investigation of Auroral Kilometric Radiation mechanisms

被引:7
|
作者
Gillespie, K. M. [1 ]
Speirs, D. C. [1 ]
Ronald, K. [1 ]
McConville, S. L. [1 ]
Phelps, A. D. R. [1 ]
Bingham, R. [1 ,2 ]
Cross, A. W. [1 ]
Robertson, C. W. [1 ]
Whyte, C. G. [1 ]
He, W. [1 ]
Vorgul, I. [3 ]
Cairns, R. A. [3 ]
Kellett, B. J. [2 ]
机构
[1] Univ Strathclyde, SUPA Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[2] STFC Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England
[3] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0741-3335/50/12/124038
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE(0,1) and TE(0,3) modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] 3D MHD Simulations of Laboratory Plasma Jets
    A. Ciardi
    S. V. Lebedev
    A. Frank
    E. G. Blackman
    D. J. Ampleford
    C. A. Jennings
    J. P. Chittenden
    T. Lery
    S. N. Bland
    S. C. Bott
    G. N. Hall
    J. Rapley
    F. A. Suzuki Vidal
    A. Marocchino
    Astrophysics and Space Science, 2007, 307 : 17 - 22
  • [22] 3D PIC-MCC simulations of positive streamers in air gaps
    Jiang, M.
    Li, Y.
    Wang, H.
    Liu, C.
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [23] Dynamics of a toroidal pure electron plasma using 3D PIC simulations
    Khamaru, S.
    Sengupta, M.
    Ganesh, R.
    PHYSICS OF PLASMAS, 2019, 26 (11)
  • [24] Multiple platform application of 3D CAD PIC simulations in pulsed power
    Peratt, Anthony L.
    Mostrom, Michael.A.
    IEEE International Conference on Plasma Science, 1995,
  • [25] 3D Convection-pulsation Simulations with the HERACLES Code
    Felix, S.
    Audit, E.
    Dintrans, B.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2014, 2015, 498 : 71 - 74
  • [26] Simulations of 3D silicon radiation detector structures in 2D and 3D
    Kalliopuska, Juha
    Eranen, Simo
    Orava, Risto
    2005 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2005, : 803 - 807
  • [27] TNSA proton maximum energy laws for 2D and 3D PIC simulations
    Sinigardi, S.
    Babaei, J.
    Turchetti, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 909 : 438 - 440
  • [28] Erratum: Simulation on a photocathode-based microtron using a 3D PIC code
    Sunjeong Park
    Young Uk Jeong
    Seong Hee Park
    Kyu-Ha Jang
    Nikolay A. Vinokurov
    Eun-San Kim
    Journal of the Korean Physical Society, 2017, 71 : 591 - 591
  • [29] Development of a parallelized 3D electrostatic PIC-FEM code and its applications
    Wu, J.-S.
    Hsu, K.-H.
    Li, F.-L.
    Hung, C.-T.
    Jou, S.-Y
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (1-2) : 98 - 101
  • [30] MEP:: A 3D PIC code for the simulation of the dynamics of a non-neutral plasma
    Tsidulko, Y
    Pozzoli, R
    Romé, M
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 209 (02) : 406 - 420