A reconfigurable neuroprocessor for self-organizing feature maps

被引:32
|
作者
Lachmair, J. [1 ]
Merenyi, E. [2 ]
Porrmann, M. [1 ]
Rueckert, U. [1 ]
机构
[1] Univ Bielefeld, Cognitron & Sensor Syst, D-33615 Bielefeld, Germany
[2] Rice Univ, Dept Stat, Houston, TX 77251 USA
关键词
Self-organizing feature maps; FPGA; Hardware accelerator; Hyperspectral data; IMPLEMENTATION; PARALLEL;
D O I
10.1016/j.neucom.2012.11.045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we compare a scalable FPGA-based hardware accelerator for the emulation of Self-Organizing Feature Maps (SOMs) with a multi-threaded software implementation on a state-of-the-art multi-core microprocessor. After discussing the mapping of SOMs to the reconfigurable digital hardware implementation, we present how the modular system architecture can be flexibly adapted to various application datasets as well as to variants of SOMs like Conscience SOM. Hyperspectral image processing is used as a benchmark scenario for the comparison of our FPGA-based hardware accelerator and state-of-the-art multi-core microprocessors. The hardware costs, power consumption, and scalability of the FPGA-based accelerator using Xilinx Virtex-4 FPGAs are discussed. for the real-world datasets used here, which require large SOMs, a speedup and energy reduction of one order of magnitude are achieved. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:189 / 199
页数:11
相关论文
共 50 条
  • [31] SELF-ORGANIZING FEATURE MAPS AND THEIR APPLICATION TO DIGITAL CODING OF INFORMATION
    IZQUIERDO, AC
    SUEIRO, JC
    MENDEZ, JAH
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 540 : 401 - 408
  • [32] Self-organizing feature maps for modeling and control of robotic manipulators
    Barreto, Guilherme De A.
    Araújo, Aluizio F. R.
    Ritter, Helge J.
    Journal of Intelligent and Robotic Systems: Theory and Applications, 2003, 36 (04): : 407 - 450
  • [33] Data fusion using a hierarchy of self-organizing feature maps
    Knopf, GK
    SENSORS AND CONTROLS FOR INTELLIGENT MACHINING, AGILE MANUFACTURING, AND MECHATRONICS, 1998, 3518 : 6 - 16
  • [34] Eclectic Method for Feature Reduction using Self-Organizing Maps
    DeLooze, Lori L.
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2069 - 2073
  • [35] Image retrieval using hierarchical self-organizing feature maps
    Sethi, IK
    Coman, I
    PATTERN RECOGNITION LETTERS, 1999, 20 (11-13) : 1337 - 1345
  • [36] Self-organizing feature maps for modeling and control of robotic manipulators
    Barreto, GD
    Araújo, AFR
    Ritter, HJ
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2003, 36 (04) : 407 - 450
  • [37] Self-organizing feature maps for the vehicle routing problem with backhauls
    Ghaziri, H
    Osman, IH
    JOURNAL OF SCHEDULING, 2006, 9 (02) : 97 - 114
  • [38] Self-organizing maps and learning vector quantization for feature sequences
    Somervuo, P
    Kohonen, T
    NEURAL PROCESSING LETTERS, 1999, 10 (02) : 151 - 159
  • [39] Integration of self-organizing feature maps and reinforcement learning in robotics
    Cervera, E
    del Pobil, AP
    BIOLOGICAL AND ARTIFICIAL COMPUTATION: FROM NEUROSCIENCE TO TECHNOLOGY, 1997, 1240 : 1344 - 1354
  • [40] Effects of varying parameters on properties of self-organizing feature maps
    Cho, SZ
    Jang, M
    Reggia, JA
    NEURAL PROCESSING LETTERS, 1996, 4 (01) : 53 - 59