Fractal dimension of a random invariant set

被引:35
|
作者
Langa, JA
Robinson, JC [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
来源
关键词
random invariant set; fractal dimension; parabolic equations;
D O I
10.1016/j.matpur.2005.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent years many deterministic parabolic equations have been shown to possess global attractors which, despite being subsets of an infinite-dimensional phase space, are finite-dimensional objects. Debussche showed how to generalize the deterministic theory to show that the random attractors of the corresponding stochastic equations have finite Hausdorff dimension. However, to deduce a parametrization of a 'finite-dimensional' set by a finite number of coordinates a bound on the fractal (upper box-counting) dimension is required. There are non-trivial problems in extending Debussche's techniques to this case, which can be overcome by careful use of the Poincare recurrence theorem. We prove that under the same conditions as in Debussche's paper and an additional concavity assumption, the fractal dimension enjoys the same bound as the Hausdorff dimension. We apply our theorem to the 2d Navier-Stokes equations with additive noise, and give two results that allow different long-time states to be distinguished by a finite number of observations. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:269 / 294
页数:26
相关论文
共 50 条
  • [1] Fractal Dimension of a Random Invariant Set and Applications
    Wang, Gang
    Tang, Yanbin
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [2] Hausdorff dimension of a random invariant set
    Debussche, A
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (10): : 967 - 988
  • [3] Information fractal dimension of Random Permutation Set
    Zhao, Tong
    Li, Zhen
    Deng, Yong
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 174
  • [4] Fractal dimension estimate for invariant set in complete Riemannian manifold
    Qu, Chengqin
    Zhou, Zuoling
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 31 (05) : 1165 - 1172
  • [5] Fractal dimension of random invariant sets and regular random attractors for stochastic hydrodynamical equations
    Renhai Wang
    Boling Guo
    Wei Liu
    Da Tien Nguyen
    [J]. Mathematische Annalen, 2024, 389 : 671 - 718
  • [6] Fractal dimension of random invariant sets and regular random attractors for stochastic hydrodynamical equations
    Wang, Renhai
    Guo, Boling
    Liu, Wei
    Nguyen, Da Tien
    [J]. MATHEMATISCHE ANNALEN, 2024, 389 (01) : 671 - 718
  • [7] ON FRACTAL DIMENSION OF INVARIANT SETS
    Mirzaie, R.
    [J]. MATHEMATICAL REPORTS, 2011, 13 (04): : 377 - 384
  • [8] Fractal Dimension and the Cantor Set
    Shirali, Shailesh A.
    [J]. RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2014, 19 (11): : 1000 - 1004
  • [9] On the box dimension of an invariant set
    Wolf, C
    [J]. NONLINEARITY, 2001, 14 (01) : 73 - 79
  • [10] Fractal dimension of random processes
    Denisov, SI
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (09) : 1491 - 1496