Information fractal dimension of Random Permutation Set

被引:5
|
作者
Zhao, Tong [1 ,2 ]
Li, Zhen [3 ]
Deng, Yong [1 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Yingcai Honors Coll, Chengdu 610054, Peoples R China
[3] China Mobile Informat Technol Ctr, Beijing 100029, Peoples R China
[4] Vanderbilt Univ, Sch Engn, Nashville, TN 37240 USA
关键词
Information dimension; Random permutation set; Fractal; Permutation mass function; ENTROPY;
D O I
10.1016/j.chaos.2023.113883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Random permutation set (RPS) is a recently introduced set based on the Dempster-Shafer evidence theory, which considers all possible permutations of the elements within a given set. The information dimension is a significant fractal dimension which plays a vital role in the information theory. Nevertheless, how to develop the information dimension of a specific permutation mass function in RPS remains an unresolved problem. To solve this problem, we propose a new dimension named information fractal dimension of Random Permutation Set. Moreover, several properties of the proposed dimension are explored and numerical examples are provided to illustrate its effectiveness. The research discovers an interesting property related to the permutation mass function corresponding to the maximum RPS entropy: its information dimension is 2, which is equivalent to the fractal dimension of Brownian motion and Peano curve.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fractal dimension of a random invariant set
    Langa, JA
    Robinson, JC
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (02): : 269 - 294
  • [2] Fractal Dimension of a Random Invariant Set and Applications
    Wang, Gang
    Tang, Yanbin
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [3] Random Permutation Set
    Deng, Yong
    [J]. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2022, 17 (01)
  • [4] The Distance of Random Permutation Set
    Chen, Luyuan
    Deng, Yong
    Cheong, Kang Hao
    [J]. INFORMATION SCIENCES, 2023, 628 : 226 - 239
  • [5] Random Permutation Set Reasoning
    Deng, Jixiang
    Deng, Yong
    Yang, Jian-Bo
    [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (12) : 10246 - 10258
  • [6] Entropy of Random Permutation Set
    Chen, Luyuan
    Deng, Yong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (11) : 4127 - 4146
  • [7] Fractal Dimension and the Cantor Set
    Shirali, Shailesh A.
    [J]. RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2014, 19 (11): : 1000 - 1004
  • [8] Random walk in random permutation set theory
    Zhou, Jiefeng
    Li, Zhen
    Deng, Yong
    [J]. CHAOS, 2024, 34 (09)
  • [9] Fractal dimension of random processes
    Denisov, SI
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (09) : 1491 - 1496
  • [10] Maximum entropy of random permutation set
    Deng, Jixiang
    Deng, Yong
    [J]. SOFT COMPUTING, 2022, 26 (21) : 11265 - 11275