Blow-up of solutions for a viscoelastic wave equation with variable exponents

被引:32
|
作者
Park, Sun-Hye [1 ]
Kang, Jum-Ran [2 ]
机构
[1] Pusan Natl Univ, Ctr Educ Accreditat, Busan, South Korea
[2] Dong A Univ, Dept Math, Busan 604714, South Korea
基金
新加坡国家研究基金会;
关键词
blow-up; variable exponents; viscoelasticity; wave equation; INITIAL-ENERGY SOLUTIONS; GLOBAL EXISTENCE; NONEXISTENCE; SPACES;
D O I
10.1002/mma.5501
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a viscoelastic wave equation with variable exponents: utt-Delta u+integral 0tg(t-s)Delta u(s)ds+a|ut|m(x)-2ut=b|u|p(x)-2u,where the exponents of nonlinearity p(center dot) and m(center dot) are given functions and a,b > 0 are constants. For nonincreasing positive function g, we prove the blow-up result for the solutions with positive initial energy as well as nonpositive initial energy. We extend the previous blow-up results to a viscoelastic wave equation with variable exponents.
引用
收藏
页码:2083 / 2097
页数:15
相关论文
共 50 条