Slow escaping points of quasiregular mappings

被引:4
|
作者
Nicks, Daniel A. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
FIXED-POINTS; SPIDERS WEB; MAPS; SETS; GROWTH; FATOU;
D O I
10.1007/s00209-016-1687-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article concerns the iteration of quasiregular mappings on and entire functions on . It is shown that there are always points at which the iterates of a quasiregular map tend to infinity at a controlled rate. Moreover, an asymptotic rate of escape result is proved that is new even for transcendental entire functions. Let be quasiregular of transcendental type. Using novel methods of proof, we generalise results of Rippon and Stallard in complex dynamics to show that the Julia set of f contains points at which the iterates tend to infinity arbitrarily slowly. We also prove that, for any large R, there is a point x with modulus approximately R such that the growth of is asymptotic to the iterated maximum modulus .
引用
收藏
页码:1053 / 1071
页数:19
相关论文
共 50 条
  • [31] Smooth quasiregular mappings with branching
    Bonk, X
    Heinonen, J
    PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 100, 2004, 100 (1): : 153 - 170
  • [32] Quasiregular Mappings, Curvature & Dynamics
    Martin, Gaven J.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1433 - 1449
  • [33] Infinitesimal geometry of quasiregular mappings
    Gutlyanskii, VY
    Martio, O
    Ryazanov, VI
    Vuorinen, M
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2000, 25 (01) : 101 - 130
  • [34] QUASIREGULAR MAPPINGS TO GENERALIZED MANIFOLDS
    Onninen, Jani
    Rajala, Kai
    JOURNAL D ANALYSE MATHEMATIQUE, 2009, 109 : 33 - 79
  • [35] The oscillation of harmonic and quasiregular mappings
    J.M. Anderson
    A. Hinkkanen
    Mathematische Zeitschrift, 2002, 239 : 703 - 713
  • [36] On angular limits of quasiregular mappings
    Huang, Jie
    Rasila, Antti
    Vuorinen, Matti
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 539 (01)
  • [37] Riesz Inequality for Harmonic Quasiregular Mappings
    Bajrami, Elver
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1490 - 1496
  • [38] Quasiregular Mappings and Discrete Group Actions
    Apanasov B.N.
    Journal of Mathematical Sciences, 2022, 260 (5) : 601 - 618
  • [39] Periodic quasiregular mappings of finite order
    Drasin, D
    Sastry, S
    REVISTA MATEMATICA IBEROAMERICANA, 2003, 19 (03) : 755 - 766
  • [40] CONFORMAL GEOMETRY AND QUASIREGULAR-MAPPINGS
    VUORINEN, M
    LECTURE NOTES IN MATHEMATICS, 1988, 1319 : 1 - &