Modeling the creep behavior of 2024-T3 Al alloy

被引:48
|
作者
Lin, Y. C. [1 ,2 ,3 ]
Xia, Yu-Chi [1 ,2 ]
Chen, Ming-Song [1 ,2 ]
Jiang, Yu-Qiang [1 ,2 ]
Li, Lei-Ting [1 ,2 ]
机构
[1] Cent S Univ, Sch Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China
[2] State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China
[3] State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
关键词
Aluminum alloy; Creep; Theta projection concept; Creep constitutive model; HIGH-TEMPERATURE CREEP; STEADY-STATE CREEP; CU-MG ALLOY; DEPENDENCE; MICROSTRUCTURE; PRECIPITATION; DEFORMATION; ELEMENT;
D O I
10.1016/j.commatsci.2012.09.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Exposure of 2024-T3 Al alloy to an elastic loading, either for "creep age forming" and other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The high-temperature creep behavior of 2024-T3 Al alloy was studied by the constant-stress uniaxial tensile creep experiments under the temperatures of 423, 448 and 473 K. Constitutive models, based on the h projection method, are established to describe the high-temperature creep behavior of 2024-T3 Al alloy. The material parameters of the established constitutive models are associated with the applied creep stress and temperature. The creep strains predicted by the proposed models well agree with experimental results, which confirm that the established creep constitutive models can give an accurate and precise estimate of the high-temperature creep behavior for 2024-T3 Al alloy. The evaluated power-law stress exponent n = 3.405 and the activation energy for secondary creep Q = 85.390 kJ mol (1) indicate that the creep processes of 2024-T3 Al alloy are controlled by the dislocation viscous glide mechanism. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:243 / 248
页数:6
相关论文
共 50 条
  • [21] Fatigue striations and fissures in 2024-T3 aluminum alloy
    McEvily, A. J.
    Endo, M.
    Cho, S.
    Kasivitamnuay, J.
    Matsunaga, H.
    MATERIALS STRUCTURE & MICROMECHANICS OF FRACTURE V, 2008, 567-568 : 397 - +
  • [22] A fatigue damage map for 2024-T3 aluminium alloy
    Rodopoulos, CA
    de los Rios, ER
    Levers, A
    Yates, JR
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2003, 26 (07) : 569 - 575
  • [23] Effect of Intermetallics on the Corrosion of Al 2024-T3 Alloy in Solutions with Different Chloride Concentration
    Queiroz, F. M.
    de Melo, H. G.
    Costa, I.
    ADVANCED MATERIALS FORUM IV, 2008, 587-588 : 415 - +
  • [24] Protection Mechanism of Al-Rich Epoxy Primer on Aluminum Alloy 2024-T3
    Wang, Xi
    Frankel, G. S.
    CORROSION, 2017, 73 (10) : 1192 - 1195
  • [25] Laser cutting of 2024-T3 aeronautic aluminum alloy
    Riveiro, A.
    Quintero, F.
    Lusquinos, F.
    Perez-Amor, M.
    JOURNAL OF LASER APPLICATIONS, 2008, 20 (04) : 230 - 235
  • [26] Effect of pretreatment on the intermetallics in aluminum alloy 2024-T3
    Kloet, JV
    Hassel, AW
    Stratmann, M
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2005, 219 (11): : 1505 - 1518
  • [27] The influence of cladding on the springback of 2024-T3 aluminiurn alloy
    McMurray, Robert
    Leacock, Alan
    Brown, Desmond
    ENGINEERING PLASTICITY AND ITS APPLICATIONS FROM NANOSCALE TO MACROSCALE, PTS 1 AND 2, 2007, 340-341 : 853 - +
  • [28] Prior corrosion and fatigue of 2024-T3 aluminum alloy
    Jones, Kimberli
    Hoeppner, David W.
    CORROSION SCIENCE, 2006, 48 (10) : 3109 - 3122
  • [29] Influence of Metal Cations on Corrosion Behavior of Aluminum Alloy 2024-T3 in Model Freshwater
    Li, Li
    Sakairi, Masatoshi
    Islam, Md. Saiful
    Kaneko, Akira
    MATERIALS TRANSACTIONS, 2023, 64 (02) : 540 - 547
  • [30] Fatigue corrosion behavior of 2024-T3 aluminum alloy with 4 surface protective coatings
    Wang, Rong
    Gao, Huilin
    Xi'an Shiyou Xueyuan Xuebao/Journal of Xi'an Petroleum Institute (Natural Science Edition), 2000, 15 (02): : 45 - 48