Random-matrix approach to the statistical compound nuclear reaction at low energies using the Monte Carlo technique

被引:35
|
作者
Kawano, T. [1 ]
Talou, P. [1 ]
Weidenmueller, H. A. [2 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany
来源
PHYSICAL REVIEW C | 2015年 / 92卷 / 04期
关键词
HAUSER-FESHBACH CALCULATIONS; CROSS-SECTIONS; PHYSICS; FORMULA; AVERAGE; RANGE; CHAOS; U-238;
D O I
10.1103/PhysRevC.92.044617
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Using a random-matrix approach and Monte Carlo simulations, we generate scattering matrices and cross sections for compound-nucleus reactions. In the absence of direct reactions we compare the average cross sections with the analytic solution given by the Gaussian orthogonal ensemble (GOE) triple integral, and with predictions of statistical approaches such as the ones from Moldauer; Hofmann, Richert, Tepel, and Weidenmuller; and Kawai, Kerman, and McVoy. We find perfect agreement with the GOE triple integral and display the limits of validity of the latter approaches. We establish a criterion for the width of the energy-averaging interval such that the relative difference between the ensemble-averaged and the energy-averaged scattering matrices lies below a given bound. Direct reactions are simulated in terms of an energy-independent background matrix. In that case, cross sections averaged over the ensemble of Monte Carlo simulations fully agree with results from the Engelbrecht-Weidenmuller transformation. The limits of other approximate approaches are displayed.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Uncertainty study on atmospheric dispersion simulations using meteorological ensembles with a Monte Carlo approach, applied to the Fukushima nuclear accident
    LE, Ngoc Bao Tran
    Korsakissok, Irene
    Mallet, Vivien
    Perillat, Raphael
    Mathieu, Anne
    ATMOSPHERIC ENVIRONMENT-X, 2021, 10
  • [42] Development of a non-invasive method for monitoring variations in salt concentrations of seawater using nuclear technique and Monte Carlo simulation
    Barbosa, Caroline M.
    Kenup-Hernandes, Hericka O.
    Raitz, Cesar
    Dam, Roos Sophia de F.
    Salgado, William L.
    Lima, Inaya C. B.
    Braz, Delson
    Salgado, Cesar M.
    APPLIED RADIATION AND ISOTOPES, 2021, 174 (174)
  • [43] Coupled-Channels Density-Matrix Approach to Low-Energy Nuclear Reaction Dynamics
    Diaz-Torres, Alexis
    FRONTIERS IN NUCLEAR STRUCTURE, ASTROPHYSICS, AND REACTIONS (FINUSTAR 3), 2011, 1377 : 136 - 143
  • [44] Statistics of retention failure in the low resistance state for hafnium oxide RRAM using a Kinetic Monte Carlo approach
    Raghavan, Nagarajan
    Frey, Daniel D.
    Bosman, Michel
    Pey, Kin Leong
    MICROELECTRONICS RELIABILITY, 2015, 55 (9-10) : 1422 - 1426
  • [45] A COMPARISON OF GAMMA-RAY BUILDUP FACTORS FOR LOW-Z MATERIAL AND FOR LOW ENERGIES USING DISCRETE ORDINATES AND POINT MONTE-CARLO METHODS
    HARIMA, Y
    HIRAYAMA, H
    ISHIKAWA, T
    SAKAMOTO, Y
    TANAKA, S
    NUCLEAR SCIENCE AND ENGINEERING, 1987, 96 (03) : 241 - 252
  • [46] Privacy-preserving Biometrics Using Matrix Random Low-rank Approximation Approach
    Chen, Xi
    Zheng, Luping
    Liu, Zengli
    Zhang, Jiashu
    2014 INTERNATIONAL SYMPOSIUM ON BIOMETRICS AND SECURITY TECHNOLOGIES (ISBAST), 2014, : 6 - 12
  • [47] Statistical Inference of Rate Constants in Chemical and Biochemical Reaction Networks Using an "Inverse" Event-Driven Kinetic Monte Carlo Method
    Diamataris, Ioannis G.
    Peristeras, Loukas D.
    Papavasileiou, Konstantinos D.
    Melissas, Vasilios S.
    Boulougouris, Georgios C.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (42): : 9132 - 9143
  • [48] MONTE-CARLO SIMULATIONS OF LARGE-SCALE COMPOSITE RANDOM ROUGH-SURFACE SCATTERING BASED ON THE BANDED-MATRIX ITERATIVE APPROACH
    TSANG, L
    CHAN, CH
    PAK, K
    SANGANI, H
    ISHIMARU, A
    PHU, P
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (02): : 691 - 696
  • [50] Reexamining fission-probability data using R-matrix Monte Carlo simulations: Beyond the surrogate-reaction method
    Bouland, O.
    PHYSICAL REVIEW C, 2019, 100 (06)