Comment on "Detecting non-Abelian geometric phases with three-level Λ systems"

被引:0
|
作者
Ericsson, Marie [1 ]
Sjoqvist, Erik [1 ,2 ]
机构
[1] Uppsala Univ, Dept Quantum Chem, SE-75120 Uppsala, Sweden
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 03期
关键词
D O I
10.1103/PhysRevA.87.036101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In their recent paper, Yan-Xiong Du et al. [Phys. Rev. A 84, 034103 (2011)] claim to have found a non-Abelian adiabatic geometric phase associated with the energy eigenstates of a large-detuned three-level Lambda system. They further propose a test to detect the noncommutative feature of this geometric phase. On the contrary, we show that the non-Abelian geometric phase picked up by the energy eigenstates of a Lambda system is trivial in the adiabatic approximation, while, in the exact treatment of the time evolution, this phase is very small and cannot be separated from the non-Abelian dynamical phase acquired along the path in parameter space. DOI: 10.1103/PhysRevA.87.036101
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Geometric phase of three-level systems in interferometry
    Sanders, BC
    de Guise, H
    Bartlett, SD
    Zhang, WP
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (03) : 369 - 372
  • [22] Non-Abelian Topological Phases and Their Quotient Relations in Acoustic Systems
    Sun, Xiao-Chen
    Wang, Jia-Bao
    He, Cheng
    Chen, Yan-Feng
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (21)
  • [23] Optimal Design Strategy of Non-Abelian Geometric Phases based on Quantum Metric
    Kremer, Mark
    Teuber, Lucas
    Szameit, Alexander
    Scheel, Stefan
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [24] Non-Abelian geometric phases and conductance of spin-3/2 holes
    Arovas, DP
    Lyanda-Geller, Y
    [J]. PHYSICAL REVIEW B, 1998, 57 (19): : 12302 - 12305
  • [25] Exploring Non-Abelian Geometric Phases in Spin-1 Ultracold Atoms
    Bharath, H. M.
    Boguslawski, Matthew
    Barrios, Maryrose
    Xin, Lin
    Chapman, Michael S.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (17)
  • [26] Geometric phases and quantum entanglement as building blocks for non-Abelian quasiparticle statistics
    Stern, A
    von Oppen, F
    Mariani, E
    [J]. PHYSICAL REVIEW B, 2004, 70 (20): : 205338 - 1
  • [27] Non-Abelian off-diagonal geometric phases in nano-engineered four-qubit systems
    Mousolou, Vahid Azimi
    Canali, Carlo M.
    Sjoqvist, Erik
    [J]. EPL, 2013, 103 (06)
  • [28] Symmetry-protected non-Abelian geometric phases in optical waveguides with nonorthogonal modes
    Pinske, Julien
    Scheel, Stefan
    [J]. PHYSICAL REVIEW A, 2022, 105 (01)
  • [29] Non-Abelian Geometric Phases in Photonics and their Optimal Design Strategy Based on Quantum Metric
    Kremer, Mark
    Teuber, Lucas
    Szameit, Alexander
    Scheel, Stefan
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [30] The Pancharatnam and the Berry phases in three-level photonic systems
    Ben-Aryeh, Y
    [J]. JOURNAL OF MODERN OPTICS, 2003, 50 (18) : 2791 - 2805