Noncentrosymmetric commensurate magnetic ordering of multiferroic ErMn2O5

被引:14
|
作者
Roessli, B. [1 ,2 ]
Fischer, P. [1 ,2 ]
Brown, P. J. [3 ]
Janoschek, M. [1 ,2 ,4 ]
Sheptyakov, D. [1 ,2 ]
Gvasaliya, S. N. [1 ,2 ]
Ouladdiaf, B. [4 ]
Zaharko, O. [1 ,2 ]
Golovenchits, Eu [5 ]
Sanina, V. [5 ]
机构
[1] ETH, Neutron Scattering Lab, CH-5232 Villigen, Psi, Switzerland
[2] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[3] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France
[4] Tech Univ Munich, Phys Dept E21, D-85748 Garching, Germany
[5] Russian Acad Sci, AF Ioffe Phys Tech Inst, Moscow 117901, Russia
关键词
D O I
10.1088/0953-8984/20/48/485216
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The noncentrosymmetric magnetic structure of ErMn2O5 has been shown to be very similar to that of HoMn2O5 (Vecchini et al 2008 Phys. Rev. B 77 134434). The magnetic modulation at 25 K has propagation vector (k) over right arrow = (1/2, 0, 1/4) and the symmetry imposes very few constraints on the magnetic configurations allowed. Only by combining the results of bulk magnetization measurements, powder and single crystal neutron diffraction and spherical neutron polarization analysis was it possible to distinguish clearly between different models. The susceptibility measurements show that the erbium magnetic moments are aligned parallel to the c-axis indicating strong single ion anisotropy. Spherical neutron polarimetry demonstrates the presence of two unequally populated chirality domains in ErMn2O5 single crystals. X-ray diffraction measurements on an ErMn2O5 powder using synchrotron radiation show that the buckling angles of the Mn-O-Mn bond change below the transition to the ferroelectric phase.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Electronic and magnetic properties of the multiferroic TbMn2O5
    A. Endichi
    H. Bouhani
    H. Zaari
    M. Balli
    O. Mounkachi
    A. El Kenz
    A. Benyoussef
    S. Mangin
    Applied Physics A, 2020, 126
  • [22] Electronic and magnetic properties of the multiferroic TbMn2O5
    Endichi, A.
    Bouhani, H.
    Zaari, H.
    Balli, M.
    Mounkachi, O.
    El Kenz, A.
    Benyoussef, A.
    Mangin, S.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (06):
  • [23] COMMENSURATE AND INCOMMENSURATE Li+-ORDERING IN ε- AND ε′-LixV2O5 AS A FUNCTION OF TEMPERATURE.
    Katzke, H.
    Czank, M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 569 - 569
  • [24] Magnetic ordering in La2Cu2O5
    Matsuda, M
    Watanabe, I
    Nagamine, K
    PHYSICA B, 2000, 289 : 161 - 164
  • [25] NEUTRON-DIFFRACTION STUDY OF MAGNETIC-ORDERING IN ERMN2SI2, ERMN2GE2 AND ERFE2SI2
    LECIEJEWICZ, J
    SIEK, S
    SZYTULA, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1984, 40 (03) : 265 - 270
  • [26] Phase transition to a commensurate magnetic structure in PrMn2O5 oxide
    Men'shenin, V. V.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2015, 120 (06) : 1019 - 1023
  • [27] Phase transition to a commensurate magnetic structure in PrMn2O5 oxide
    V. V. Men’shenin
    Journal of Experimental and Theoretical Physics, 2015, 120 : 1019 - 1023
  • [28] Correlation between quantum charge fluctuations and magnetic ordering in multiferroic LuFe2O4
    Lee, Jinho
    Prasankumar, Rohit P.
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (11):
  • [29] Correlation between quantum charge fluctuations and magnetic ordering in multiferroic LuFe2O4
    Jinho Lee
    Rohit P. Prasankumar
    The European Physical Journal B, 2014, 87
  • [30] Magnetic anisotropy of multiferroic HoMn2O5 single crystal
    Tzankov, D.
    Skumryev, V.
    Aroyo, M.
    Puzniak, R.
    Kuz'min, M. D.
    Mikhov, M.
    SOLID STATE COMMUNICATIONS, 2008, 147 (5-6) : 212 - 216