The impact of model uncertainty on benchmark dose estimation

被引:25
|
作者
West, R. Webster [1 ]
Piegorsch, Walter W. [2 ,3 ]
Pena, Edsel A. [4 ]
An, Lingling [2 ,3 ,5 ]
Wu, Wensong [6 ]
Wickens, Alissa A. [3 ]
Xiong, Hui [7 ]
Chen, Wenhai [3 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Univ Arizona, Inst BIO5, Tucson, AZ USA
[3] Univ Arizona, Interdisciplinary Program Stat, Tucson, AZ USA
[4] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
[5] Univ Arizona, Dept Agr & Biosyst Engn, Tucson, AZ USA
[6] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
[7] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
AIC; benchmark analysis; BMDL; excess risk; extra risk; model adequacy; model selection; quantitative risk assessment; RISK-ASSESSMENT; TOXICITY;
D O I
10.1002/env.2180
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We study the popular benchmark dose (BMD) approach for estimation of low exposure levels in toxicological risk assessment, focusing on doseresponse experiments with quantal data. In such settings, representations of the risk are traditionally based on a specified, parametric, doseresponse model. It is a well-known concern, however, that uncertainty can exist in specification and selection of the model. If the chosen parametric form is in fact misspecified, this can lead to inaccurate, and possibly unsafe, low-dose inferences. We study the effects of model selection and possible misspecification on the BMD, on its corresponding lower confidence limit (BMDL), and on the associated extra risks achieved at these values, via large-scale Monte Carlo simulation. It is seen that an uncomfortably high percentage of instances can occur where the true extra risk at the BMDL under a misspecified or incorrectly selected model can surpass the target benchmark response, exposing potential dangers of traditional strategies for model selection when calculating BMDs and BMDLs. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:706 / 716
页数:11
相关论文
共 50 条
  • [31] The benchmark dose estimation of reference levels of serum urate for gout
    Xiao Chen
    Zhongqiu Wang
    Na Duan
    Wenjing Cui
    Xiaoqiang Ding
    Taiyi Jin
    [J]. Clinical Rheumatology, 2018, 37 : 2887 - 2891
  • [32] A Web-Based System for Bayesian Benchmark Dose Estimation
    Shao, Kan
    Shapiro, AndrewJ.
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2018, 126 (01)
  • [33] The benchmark dose estimation of reference levels of serum urate for gout
    Chen, Xiao
    Wang, Zhongqiu
    Duan, Na
    Cui, Wenjing
    Ding, Xiaoqiang
    Jin, Taiyi
    [J]. CLINICAL RHEUMATOLOGY, 2018, 37 (10) : 2887 - 2891
  • [34] Estimation of the Benchmark Dose for Right-Censored Lifetime Data
    Chen, Yuh-Ing
    Lin, Wen-Ming
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (06) : 1514 - 1531
  • [35] ABSORBED DOSE UNCERTAINTY ESTIMATION FOR PROTON THERAPY
    Jokic, Vesna Spasic
    Dobrosavljevic, Aleksandar
    Belicev, Petar
    [J]. NUCLEAR TECHNOLOGY & RADIATION PROTECTION, 2012, 27 (03): : 297 - 304
  • [36] Statistical Evaluation of Toxicological Experimental Design for Bayesian Model Averaged Benchmark Dose Estimation with Dichotomous Data
    Shao, Kan
    Small, Mitchell J.
    [J]. HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2012, 18 (05): : 1096 - 1119
  • [37] ESTIMATION UNDER MODEL UNCERTAINTY
    Longford, Nicholas T.
    [J]. STATISTICA SINICA, 2017, 27 (02) : 859 - 877
  • [38] Estimation of Benchmark Dose of Cumulative Cadmium Exposure for Renal Tubular Effect
    Nogawa, Kazuhiro
    Suwazono, Yasushi
    Watanabe, Yuuka
    Elinder, Carl-Gustaf
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (10)
  • [39] Impact of model and dose uncertainty on model-based selection of oropharyngeal cancer patients for proton therapy
    Bijman, Rik G.
    Breedveld, Sebastiaan
    Arts, Tine
    Astreinidou, Eleftheria
    de Jong, Martin A.
    Granton, Patrick V.
    Petit, Steven F.
    Hoogeman, Mischa S.
    [J]. ACTA ONCOLOGICA, 2017, 56 (11) : 1444 - 1450
  • [40] Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints
    Wheeler, Matthew W.
    Bailer, A. John
    Cole, Tarah
    Park, Robert M.
    Shao, Kan
    [J]. RISK ANALYSIS, 2017, 37 (11) : 2107 - 2118