The impact of model uncertainty on benchmark dose estimation

被引:25
|
作者
West, R. Webster [1 ]
Piegorsch, Walter W. [2 ,3 ]
Pena, Edsel A. [4 ]
An, Lingling [2 ,3 ,5 ]
Wu, Wensong [6 ]
Wickens, Alissa A. [3 ]
Xiong, Hui [7 ]
Chen, Wenhai [3 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Univ Arizona, Inst BIO5, Tucson, AZ USA
[3] Univ Arizona, Interdisciplinary Program Stat, Tucson, AZ USA
[4] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
[5] Univ Arizona, Dept Agr & Biosyst Engn, Tucson, AZ USA
[6] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
[7] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
AIC; benchmark analysis; BMDL; excess risk; extra risk; model adequacy; model selection; quantitative risk assessment; RISK-ASSESSMENT; TOXICITY;
D O I
10.1002/env.2180
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We study the popular benchmark dose (BMD) approach for estimation of low exposure levels in toxicological risk assessment, focusing on doseresponse experiments with quantal data. In such settings, representations of the risk are traditionally based on a specified, parametric, doseresponse model. It is a well-known concern, however, that uncertainty can exist in specification and selection of the model. If the chosen parametric form is in fact misspecified, this can lead to inaccurate, and possibly unsafe, low-dose inferences. We study the effects of model selection and possible misspecification on the BMD, on its corresponding lower confidence limit (BMDL), and on the associated extra risks achieved at these values, via large-scale Monte Carlo simulation. It is seen that an uncomfortably high percentage of instances can occur where the true extra risk at the BMDL under a misspecified or incorrectly selected model can surpass the target benchmark response, exposing potential dangers of traditional strategies for model selection when calculating BMDs and BMDLs. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:706 / 716
页数:11
相关论文
共 50 条
  • [1] Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data
    Shao, Kan
    Gift, Jeffrey S.
    [J]. RISK ANALYSIS, 2014, 34 (01) : 101 - 120
  • [2] Bayesian model averaging for benchmark dose estimation
    Simmons, Susan J.
    Chen, Cuixian
    Li, Xiaosong
    Wang, Yishi
    Piegorsch, Walter W.
    Fang, Qijun
    Hu, Bonnie
    Dunn, G. Eddie
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2015, 22 (01) : 5 - 16
  • [3] Bayesian model averaging for benchmark dose estimation
    Susan J. Simmons
    Cuixian Chen
    Xiaosong Li
    Yishi Wang
    Walter W. Piegorsch
    Qijun Fang
    Bonnie Hu
    G. Eddie Dunn
    [J]. Environmental and Ecological Statistics, 2015, 22 : 5 - 16
  • [4] Comparing model averaging with other model selection strategies for benchmark dose estimation
    Matthew W. Wheeler
    A. John Bailer
    [J]. Environmental and Ecological Statistics, 2009, 16 : 37 - 51
  • [5] Comparing model averaging with other model selection strategies for benchmark dose estimation
    Wheeler, Matthew W.
    Bailer, A. John
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2009, 16 (01) : 37 - 51
  • [6] Potential Uncertainty Reduction in Model-Averaged Benchmark Dose Estimates Informed by an Additional Dose Study
    Shao, Kan
    Small, Mitchell J.
    [J]. RISK ANALYSIS, 2011, 31 (10) : 1561 - 1575
  • [7] Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water
    Morales, KH
    Ibrahim, JG
    Chen, CJ
    Ryan, LM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) : 9 - 17
  • [8] A Unified Framework for Benchmark Dose Estimation Applied to Mixed Models and Model Averaging
    Ritz, Christian
    Gerhard, Daniel
    Hothorn, Ludwig A.
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2013, 5 (01): : 79 - 90
  • [9] Quantalization of continuous data for benchmark dose estimation
    Gaylor, DW
    [J]. REGULATORY TOXICOLOGY AND PHARMACOLOGY, 1996, 24 (03) : 246 - 250
  • [10] Estimation of the benchmark dose by structural equation models
    Budtz-Jorgensen, Esben
    [J]. BIOSTATISTICS, 2007, 8 (04) : 675 - 688