HARA: A Hierarchical Approach for Robust Rotation Averaging

被引:11
|
作者
Lee, Seong Hun [1 ]
Civera, Javier [1 ]
机构
[1] Univ Zaragoza, I3A, Zaragoza, Spain
关键词
D O I
10.1109/CVPR52688.2022.01532
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel hierarchical approach for multiple rotation averaging, dubbed HARA. Our method incrementally initializes the rotation graph based on a hierarchy of triplet support. The key idea is to build a spanning tree by prioritizing the edges with many strong triplet supports and gradually adding those with weaker and fewer supports. This reduces the risk of adding outliers in the spanning tree. As a result, we obtain a robust initial solution that enables us to filter outliers prior to nonlinear optimization. With minimal modification, our approach can also integrate the knowledge of the number of valid 2D-2D correspondences. We perform extensive evaluations on both synthetic and real datasets, demonstrating state-of-the-art results.
引用
收藏
页码:15756 / 15765
页数:10
相关论文
共 50 条
  • [21] Rotation Averaging and Strong Duality
    Eriksson, Anders
    Olsson, Carl
    Kahl, Fredrik
    Chin, Tat-Jun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 127 - 135
  • [22] Robust weighted averaging
    Leski, JM
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (08) : 796 - 804
  • [23] Robust determinants of companies' capacity to innovate: a Bayesian model averaging approach
    Santa, Mijalche
    Stojkoski, Viktor
    Josimovski, Marko
    Trpevski, Igor
    Kocarev, Ljupco
    TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT, 2019, 31 (11) : 1283 - 1296
  • [24] Hierarchical Time-of-Arrival Self-Calibration using Robust Receiver Distance Averaging
    Larsson, Malte
    Larsson, Viktor
    Olsson, Carl
    Oskarsson, Magnus
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 982 - 986
  • [25] Robust recognition of scaled eigenimages through a hierarchical approach
    Bischof, H
    Leonardis, A
    1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1998, : 664 - 670
  • [26] A Robust Hierarchical Learning Approach for dynamic MEC Networks
    Wu, Yi-Chen
    Lin, Che
    Quek, Tony Q. S.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [27] Robust Hierarchical Clustering for Directed Networks: An Axiomatic Approach*
    Carlsson, Gunnar
    Memoli, Facundo
    Segarra, Santiago
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2021, 5 (04) : 675 - 700
  • [28] Rotation Coordinate Descent for Fast Globally Optimal Rotation Averaging
    Parra, Alvaro
    Chng, Shin-Fang
    Chin, Tat-Jun
    Eriksson, Anders
    Reid, Ian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4296 - 4305
  • [29] Multiple rotation averaging using only the relative rotation angle
    LI Bin
    SHANG Yang
    GUAN BangLei
    LIANG ShunKun
    SUN XiaoLiang
    YU QiFeng
    Science China(Technological Sciences), 2023, 66 (10) : 2978 - 2985
  • [30] Multiple rotation averaging using only the relative rotation angle
    Li, Bin
    Shang, Yang
    Guan, BangLei
    Liang, ShunKun
    Sun, XiaoLiang
    Yu, QiFeng
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (10) : 2978 - 2985