Multi-Objective Optimisation for Fuzzy Modelling using Interval Type-2 Fuzzy Sets

被引:0
|
作者
Wang, Shen [1 ]
Mahfouf, Mahdi [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
关键词
SYSTEMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reports on a new Mamdani data-driven fuzzy modelling approach, which makes use of interval type-2 fuzzy sets and employs a multi-objective evolutionary algorithm to optimise the structure and parameters of interval type-2 fuzzy models with respect to the predictive accuracy and the complexity of fuzzy models. In order to reduce the computational burden of the interval type-2 fuzzy modelling, a computationally efficient type-reduction technique is developed based on the center-of-sums defuzzifier. As the clustering-based method is utilised to elicit the initial fuzzy model, a new objective function is also introduced to improve the distribution of membership functions in each variable domain. The proposed modelling approach is then tested on a benchmark problem, where it is shown to be able to conduct an interpretable interval type-2 fuzzy model while maintaining a good predictive accuracy. This approach is also applied to the problem of prediction of the mechanical properties of alloy steels, and is shown to perform well.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Supplier Selection Using Ranking Interval Type-2 Fuzzy Sets
    Kar, Samarjit
    Chatterjee, Kajal
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2014, VOL 1, 2015, 327 : 9 - 17
  • [32] Process Capability Analysis Using Interval Type-2 Fuzzy Sets
    Abbas Parchami
    Sezi Çevik Onar
    Başar Öztayşi
    Cengiz Kahraman
    International Journal of Computational Intelligence Systems, 2017, 10 : 721 - 733
  • [33] Perceptual Reasoning Using Interval Type-2 Fuzzy Sets: Properties
    Wu, Dongrui
    Mendel, Jerry M.
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 1221 - 1228
  • [34] On Computing Normalized Interval Type-2 Fuzzy Sets
    Mendel, Jerry M.
    Rajati, Mohammad Reza
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (05) : 1335 - 1340
  • [35] The Reduction of Interval Type-2 LR Fuzzy Sets
    Chen, Chao-Lieh
    Chen, Shen-Chien
    Kuo, Yau-Hwang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (04) : 840 - 858
  • [36] A multi-objective optimization of type-2 fuzzy control speed in FPGAs
    Maldonado, Yazmin
    Castillo, Oscar
    Melin, Patricia
    APPLIED SOFT COMPUTING, 2014, 24 : 1164 - 1174
  • [37] Uncertainty measures for interval type-2 fuzzy sets
    Wu, Dongrui
    Mendel, Jerry M.
    INFORMATION SCIENCES, 2007, 177 (23) : 5378 - 5393
  • [38] Efficiency Calculation with Interval Type-2 Fuzzy Sets
    Ercan-Teksen, Hatice
    INTELLIGENT AND FUZZY SYSTEMS, VOL 3, INFUS 2024, 2024, 1090 : 606 - 613
  • [39] Interval type-2 fuzzy sets in psychological interventions
    Wu, Zhanlin
    Mo, Hong
    Zhou, Min
    Tan, Dan
    2013 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2013, : 238 - 242
  • [40] Process Capability Analysis Using Interval Type-2 Fuzzy Sets
    Parchami, Abbas
    Onar, Sezi Cevik
    Oztaysi, Basar
    Kahraman, Cengiz
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2017, 10 (01) : 721 - 733