On the Specific Heat Capacity of CuO Nanofluid

被引:168
|
作者
Zhou, Le-Ping [2 ]
Wang, Bu-Xuan [1 ]
Peng, Xiao-Feng [1 ]
Du, Xiao-Ze [2 ]
Yang, Yong-Ping [2 ]
机构
[1] Tsinghua Univ, Dept Thermal Engn, Beijing 100084, Peoples R China
[2] N China Elect Power Univ, Minist Educ, Sch Energy & Power, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2010/172085
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper reviews briefly the definition of heat capacity and clarifies the defined specific heat capacity and volumetric heat capacity. The specific heat capacity and volumetric heat capacity, with our measured experimental data for CuO nanofluids, are discussed as an illustrating example. The result indicates that the specific heat capacity of CuO nanofluid decreases gradually with increasing volume concentration of nanoparticles. The measurement and the prediction from the thermal equilibrium model exhibit good agreement. The other simple mixing model fails to predict the specific heat capacity of CuO nanofluid. The nanoparticle size effect and solid-liquid interface effect on the specific heat capacity of nanofluid are discussed.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [31] Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles
    M. Sheikholeslami
    M. Jafaryar
    Ahmad Shafee
    Zhixiong Li
    Journal of Thermal Analysis and Calorimetry, 2018, 134 : 2295 - 2303
  • [32] Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink
    Chabi, A. R.
    Zarrinabadi, S.
    Peyghambarzadeh, S. M.
    Hashemabadi, S. H.
    Salimi, M.
    HEAT AND MASS TRANSFER, 2017, 53 (02) : 661 - 671
  • [33] CuO-water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator
    Jafaryar, M.
    Sheikholeslami, M.
    Li, Zhixiong
    POWDER TECHNOLOGY, 2018, 336 : 131 - 143
  • [34] Experimental investigation for heat transfer performance of CuO-water nanofluid in a double pipe heat exchanger
    Ahirwar, Brajesh Kumar
    Kumar, Arvind
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (09) : 4133 - 4151
  • [35] Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink
    A. R. Chabi
    S. Zarrinabadi
    S. M. Peyghambarzadeh
    S. H. Hashemabadi
    M. Salimi
    Heat and Mass Transfer, 2017, 53 : 661 - 671
  • [36] Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles
    Sheikholeslami, M.
    Jafaryar, M.
    Shafee, Ahmad
    Li, Zhixiong
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 134 (03) : 2295 - 2303
  • [37] Experimental investigation of CuO-water nanofluid flow and heat transfer inside a microchannel heat sink
    Rimbault, Benjamin
    Cong Tam Nguyen
    Galanis, Nicolas
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 84 : 275 - 292
  • [38] Melting heat transfer in squeezing flow of basefluid (water), nanofluid (CNTs + water) and hybrid nanofluid (CNTs + CuO + water)
    Khursheed Muhammad
    T. Hayat
    A. Alsaedi
    B. Ahmad
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 1157 - 1174
  • [39] Thermal Conductivity and Specific Heat Capacity of Dodecylbenzenesulfonic Acid-Doped Polyaniline Particles-Water Based Nanofluid
    Chew, Tze Siong
    Daik, Rusli
    Hamid, Muhammad Azmi Abdul
    POLYMERS, 2015, 7 (07) : 1221 - 1231
  • [40] CHANGES OF SPECIFIC-HEAT CAPACITY AND HEAT-CAPACITY DURING WEATHERING
    HATTA, T
    CHEMICAL GEOLOGY, 1987, 60 (1-4) : 131 - 136