Bounds for Hilbert's irreducibility theorem

被引:0
|
作者
Debes, Pierre [1 ]
Walkowiak, Yann [2 ]
机构
[1] Univ Lille 1, F-59655 Villeneuve Dascq, France
[2] IUT Laval, Dept Informat, F-53000 Laval 9, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of Hilbert's irreducibility theorem, it is an open question whether there exists a bound for the least hilbertian specialization in N that is polynomial in the degree d and the logarithmic height log(H) of the polynomial P(T, Y) in question. A positive answer would be useful. notably for algorithmic applications. We obtain a polynomial bound in log(H) and d(Hi(P)) where Hi(P) - the Hilbert index of P - is a pure group-theoretical invariant, we define and which we show to be absolutely bounded for many classes of polynomials. We also discuss further questions related to effectiveness in Hilbert's irreducibility theorem.
引用
收藏
页码:1059 / 1083
页数:25
相关论文
共 50 条
  • [41] A scholium on the Hilbert's theorem 98
    Lorenz, F
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1998, 68 : 347 - 362
  • [42] Sharpening of Hilbert’s lemniscate theorem
    Béla Nagy
    Vilmos Totik
    Journal d’Analyse Mathématique, 2005, 96 : 191 - 223
  • [43] IRREDUCIBILITY OF SOME NESTED HILBERT SCHEMES
    Gangopadhyay, Chandranandan
    Rasul, Parvez
    Sebastian, Ronnie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (05) : 1857 - 1870
  • [44] Extended Hilbert irreducibility and its applications
    Haung, MD
    Wong, YC
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2000, 37 (01): : 121 - 145
  • [46] Bounds in Cohen’s Idempotent Theorem
    Tom Sanders
    Journal of Fourier Analysis and Applications, 2020, 26
  • [47] A weak variant of Hindman’s Theorem stronger than Hilbert’s Theorem
    Lorenzo Carlucci
    Archive for Mathematical Logic, 2018, 57 : 381 - 389
  • [48] A weak variant of Hindman's Theorem stronger than Hilbert's Theorem
    Carlucci, Lorenzo
    ARCHIVE FOR MATHEMATICAL LOGIC, 2018, 57 (3-4) : 381 - 389
  • [49] Fermat’s last theorem and Hilbert’s program
    Daniel J. Velleman
    The Mathematical Intelligencer, 1997, 19 : 64 - 67
  • [50] Fermat's last theorem and Hilbert's program
    Velleman, Daniel J.
    MATHEMATICAL INTELLIGENCER, 1997, 19 (01): : 64 - 67