Log-concave density estimation;
Non-parametric density estimation;
Polyhedral subdivision;
Secondary polytope;
52B99;
62G07;
62H12;
D O I:
10.1007/s00454-018-0024-y
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on Rd that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.
机构:
MIT, IDSS, Cambridge, MA 02139 USA
MIT, Dept EECS, Cambridge, MA 02139 USA
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z4, CanadaMIT, IDSS, Cambridge, MA 02139 USA
Robeva, Elina
Sturmfels, Bernd
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif, Dallas, TX USA
Max Planck Inst, MPI MiS Leipzig, Leipzig, GermanyMIT, IDSS, Cambridge, MA 02139 USA
Sturmfels, Bernd
Tran, Ngoc
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Dallas, Dept Math, Richardson, TX 75083 USAMIT, IDSS, Cambridge, MA 02139 USA
Tran, Ngoc
Uhler, Caroline
论文数: 0引用数: 0
h-index: 0
机构:
MIT, IDSS, Cambridge, MA 02139 USA
MIT, Dept EECS, Cambridge, MA 02139 USAMIT, IDSS, Cambridge, MA 02139 USA
机构:
Grad Sch Informat Sci & Technol, Dept Math Informat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, JapanGrad Sch Informat Sci & Technol, Dept Math Informat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
Takazawa, Yuki
Sei, Tomonari
论文数: 0引用数: 0
h-index: 0
机构:
Grad Sch Informat Sci & Technol, Dept Math Informat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, JapanGrad Sch Informat Sci & Technol, Dept Math Informat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan