Geometry of Log-Concave Density Estimation

被引:4
|
作者
Robeva, Elina [1 ]
Sturmfels, Bernd [2 ,3 ]
Uhler, Caroline [4 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] MPI MiS, Leipzig, Germany
[3] Univ Calif Berkeley, Berkeley, CA USA
[4] MIT, IDSS & EECS Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Log-concave density estimation; Non-parametric density estimation; Polyhedral subdivision; Secondary polytope; 52B99; 62G07; 62H12;
D O I
10.1007/s00454-018-0024-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on Rd that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.
引用
收藏
页码:136 / 160
页数:25
相关论文
共 50 条
  • [1] Geometry of Log-Concave Density Estimation
    Elina Robeva
    Bernd Sturmfels
    Caroline Uhler
    Discrete & Computational Geometry, 2019, 61 : 136 - 160
  • [2] Publisher Correction: Geometry of Log-Concave Density Estimation
    Elina Robeva
    Bernd Sturmfels
    Caroline Uhler
    Discrete & Computational Geometry, 2022, 68 (2) : 645 - 645
  • [3] ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION
    Kim, Arlene K. H.
    Guntuboyina, Adityanand
    Samworth, Richard J.
    ANNALS OF STATISTICS, 2018, 46 (05): : 2279 - 2306
  • [4] Fast multivariate log-concave density estimation
    Rathke, Fabian
    Schnoerr, Christoph
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 140 : 41 - 58
  • [5] Recent Progress in Log-Concave Density Estimation
    Samworth, Richard J.
    STATISTICAL SCIENCE, 2018, 33 (04) : 493 - 509
  • [6] A Computational Approach to Log-Concave Density Estimation
    Rathke, Fabian
    Schnoerr, Christoph
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (03): : 151 - 166
  • [7] ADAPTATION IN MULTIVARIATE LOG-CONCAVE DENSITY ESTIMATION
    Feng, Oliver Y.
    Guntuboyina, Adityanand
    Kim, Arlene K. H.
    Samworth, Richard J.
    ANNALS OF STATISTICS, 2021, 49 (01): : 129 - 153
  • [8] Geometry of Log-Concave Density Estimation (vol 61, pg 136, 2018)
    Robeva, Elina
    Sturmfels, Bernd
    Uhler, Caroline
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (02) : 645 - 645
  • [9] GLOBAL RATES OF CONVERGENCE IN LOG-CONCAVE DENSITY ESTIMATION
    Kim, Arlene K. H.
    Samworth, Richard J.
    ANNALS OF STATISTICS, 2016, 44 (06): : 2756 - 2779
  • [10] A new computational framework for log-concave density estimation
    Chen, Wenyu
    Mazumder, Rahul
    Samworth, Richard J.
    MATHEMATICAL PROGRAMMING COMPUTATION, 2024, 16 (02) : 185 - 228