TiO2 nanotubular arrays decorated with ultrafine Ag nanoseeds enabling a stable and dendrite-free lithium metal anode

被引:2
|
作者
Li, Yulei [1 ]
Li, Shenhao [1 ]
Cui, Jiewu [1 ]
Yan, Jian [1 ]
Tan, Hark Hoe [2 ]
Liu, Jiaqin [1 ]
Wu, Yucheng [1 ]
机构
[1] Hefei Univ Technol, Key Lab Adv Funct Mat & Devices Anhui Prov, Engn Res Ctr Adv Composite Mat Design & Applicat, Inst Ind & Equipment Technol,Sch Mat Sci & Engn, Hefei 230009, Peoples R China
[2] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
来源
NANOSCALE ADVANCES | 2022年 / 4卷 / 21期
基金
中国国家自然科学基金;
关键词
A-stable - Ag nanocrystals - Cycling capacity - Li metal - Li-anodes - Lithium metal anode - Nanoseeds - Nanotubular - Ultra-fines - Ultrafine;
D O I
10.1039/d2na00526c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To exploit next-generation high-energy Li metal batteries, it is vitally important to settle the issue of dendrite growth accompanied by interfacial instability of the Li anode. Applying 3D current collectors as hosts for Li deposition emerges as a prospective strategy to achieve uniform Li nucleation and suppress Li dendrites. Herein, well-aligned and spaced TiO2 nanotube arrays grown on Ti foil and surface decorated with dispersed Ag nanocrystals (Ag@TNTAs/Ti) were constructed and employed as a 3D host for regulating Li stripping/plating behaviors and suppressing Li dendrites, and also relieving volume fluctuation during repetitive Li plating/stripping. Uniform TiO2 nanotubular structures with a large surface allow fast electron/ion transport and uniform local current density distribution, leading to homogeneous Li growth on the nanotube surface. Moreover, Ag nanocrystals and TiO2 nanotubes have good Li affinity, which facilitates Li+ capture and reduces the Li nucleation barrier, achieving uniform nucleation and growth of Li metal over the 3D Ag@TNTAs/Ti host. As a result, the as-fabricated Ag@TNTAs/Ti electrode exhibits dendrite-free plating morphology and long-term cycle stability with coulombic efficiency maintained over 98.5% even after 1000 cycles at a current density of 1 mA cm(-2) and cycling capacity of 1 mA h cm(-2). In symmetric cells, the Ag@TNTAs/Ti-Li electrode shows a much lower hysteresis of 40 mV over an ultralong cycle period of 2600 h at a current density of 1 mA cm(-2) and cycling capacity of 1 mA h cm(-2). Moreover, the full cell with the Ag@TNTAs/Ti-Li anode and LiFePO4 cathode achieves a high capacity of 155.2 mA h g(-1) at 0.5C and retains 77.9% capacity with an average CE of approximate to 99.7% over 200 cycles.
引用
收藏
页码:4639 / 4647
页数:9
相关论文
共 50 条
  • [1] Porous scaffold of TiO2 for dendrite-free lithium metal anode
    Zhou, Meijuan
    Lyu, Yingchun
    Liu, Yang
    Guo, Bingkun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 : 364 - 370
  • [2] Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode
    Wang, Xianshu
    Pan, Zhenghui
    Wu, Yang
    Ding, Xiaoyu
    Hong, Xujia
    Xu, Guoguang
    Liu, Meinan
    Zhang, Yuegang
    Li, Weishan
    NANO RESEARCH, 2019, 12 (03) : 525 - 529
  • [3] Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode
    Xianshu Wang
    Zhenghui Pan
    Yang Wu
    Xiaoyu Ding
    Xujia Hong
    Guoguang Xu
    Meinan Liu
    Yuegang Zhang
    Weishan Li
    Nano Research, 2019, 12 : 525 - 529
  • [4] Regulating lithium nucleation and deposition on carbon cloth decorated with vertically aligned Ag-doped MnO2 2 nanosheet arrays for dendrite-free lithium metal anode
    Liu, Derong
    Li, Hongmei
    Jiang, Xiaoping
    Tao, Yuanyuan
    Li, Chenglong
    Gao, Meng
    Li, Dongwei
    JOURNAL OF POWER SOURCES, 2024, 603
  • [5] A graphdiyne analogue for dendrite-free lithium metal anode
    He, Jingyi
    Hu, Guilin
    He, Feng
    Wang, Fan
    Zuo, Zicheng
    Li, Yongjun
    ELECTROCHIMICA ACTA, 2022, 416
  • [6] Stable and dendrite-free lithium metal anodes enabled by carbon paper incorporated with ultrafine lithiophilic TiO2 derived from MXene and carbon dioxide
    Tian, Yuan
    An, Yongling
    Wei, Chuanliang
    Tao, Yuan
    Zhang, Yuchan
    Jiang, Huiyu
    Tan, Liwen
    Feng, Jinkui
    Qian, Yitai
    CHEMICAL ENGINEERING JOURNAL, 2021, 406
  • [7] Polyoxometalate Ionic Sponge Enabled Dendrite-Free and Highly Stable Lithium Metal Anode
    Zhong, Yuan
    Su, Yaqing
    Huang, Peng
    Jiang, Qiu
    Lin, Yue
    Wu, Haiyang
    Hensen, Emiel J. M.
    Abdelkader, Amr M.
    Xi, Kai
    Lai, Chao
    Chou, Shulei
    SMALL METHODS, 2022, 6 (03)
  • [8] A stable artificial protective layer for high capacity dendrite-free lithium metal anode
    Wen, Zhipeng
    Peng, Yueying
    Cong, Jianlong
    Hua, Haiming
    Lin, Yingxin
    Xiong, Jian
    Zeng, Jing
    Zhao, Jinbao
    NANO RESEARCH, 2019, 12 (10) : 2535 - 2542
  • [9] Spatially Controlled Lithium Deposition on Silver-Nanocrystals-Decorated TiO2 Nanotube Arrays Enabling Ultrastable Lithium Metal Anode
    Lu, Yanzhong
    Wang, Jinshan
    Chen, Yang
    Zheng, Xinyu
    Yao, Hurong
    Mathur, Sanjay
    Hong, Zhensheng
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (09)
  • [10] A stable artificial protective layer for high capacity dendrite-free lithium metal anode
    Zhipeng Wen
    Yueying Peng
    Jianlong Cong
    Haiming Hua
    Yingxin Lin
    Jian Xiong
    Jing Zeng
    Jinbao Zhao
    Nano Research, 2019, 12 : 2535 - 2542