Porous scaffold of TiO2 for dendrite-free lithium metal anode

被引:21
|
作者
Zhou, Meijuan [1 ]
Lyu, Yingchun [1 ]
Liu, Yang [1 ]
Guo, Bingkun [1 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
基金
国家重点研发计划;
关键词
Lithium batteries; Lithium metal anode; 3D conductive scaffold; Electrolyte additives; Solid electrolyte interface; Lithium dendrite; SELECTIVE DEPOSITION; STABLE HOST; LI; ION; PERFORMANCE; BATTERIES; CAPACITY; GROWTH; ELECTROCHEMISTRY; ELECTROLYTES;
D O I
10.1016/j.jallcom.2019.03.320
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal anode is of great interest for advanced lithium rechargeable batteries such as lithium-air and lithium-sulfur batteries, owing to its high volumetric and gravimetric energy density. There are, however, two major challenges limit its practical application, which are the lithium dendrite growth and low Coulombic efficiency. Here, we demonstrate that the lithium dendrite growth and continuous decomposition of electrolyte can be effectively suppressed by constructing ideal porous TiO2 modified Cu electrodes (PTCEs) and building a stable solid electrolyte interphase (SEI).On the one hand, PTCEs can provide ample space for lithium deposition, alleviating the huge volumetric variation during cycling. On the other hand, the originally formed LixTiO2 can work as a hybrid ionic/electronic conductor, reducing the lithium nucleation overpotential. Combined with additives of fluoroethylene carbonate (FEC) and LiNO3, electrolyte decomposition has been further inhibited. As a result, the Coulombic efficiency of lithium plating/stripping is highly stable at 98.6% for more than 150 cycles. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:364 / 370
页数:7
相关论文
共 50 条
  • [1] A graphdiyne analogue for dendrite-free lithium metal anode
    He, Jingyi
    Hu, Guilin
    He, Feng
    Wang, Fan
    Zuo, Zicheng
    Li, Yongjun
    ELECTROCHIMICA ACTA, 2022, 416
  • [2] TiO2 nanotubular arrays decorated with ultrafine Ag nanoseeds enabling a stable and dendrite-free lithium metal anode
    Li, Yulei
    Li, Shenhao
    Cui, Jiewu
    Yan, Jian
    Tan, Hark Hoe
    Liu, Jiaqin
    Wu, Yucheng
    NANOSCALE ADVANCES, 2022, 4 (21): : 4639 - 4647
  • [3] Three-dimensional SnCu scaffold with layered porous structure enable dendrite-free anode of lithium metal batteries
    Liu, Ying
    Lin, Li
    Sun, Yan
    Wang, Limin
    Ye, Shen
    Liu, Wanqiang
    Cheng, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 928
  • [4] Recent Advances in Lithiophilic Porous Framework toward Dendrite-Free Lithium Metal Anode
    Pathak, Rajesh
    Zhou, Yue
    Qiao, Qiquan
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [5] A gradient topology host for a dendrite-free lithium metal anode
    Sun, Bing
    Zhang, Qin
    Xu, Wenli
    Zhao, Rong
    Zhu, Hui
    Lv, Wei
    Li, Xuanke
    Yang, Nianjun
    NANO ENERGY, 2022, 94
  • [6] Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode
    Qin, Jinli
    Ren, Longtao
    Cao, Xin
    Zhao, Yajun
    Xu, Haijun
    Liu, Wen
    Sun, Xiaoming
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (01) : 1 - 10
  • [7] Porous conductive interlayer for dendrite-free lithium metal battery
    Hui Liu
    Daichong Peng
    Tianye Xu
    Kedi Cai
    Kening Sun
    Zhenhua Wang
    Journal of Energy Chemistry , 2021, (02) : 412 - 418
  • [8] Porous conductive interlayer for dendrite-free lithium metal battery
    Liu, Hui
    Peng, Daichong
    Xu, Tianye
    Cai, Kedi
    Sun, Kening
    Wang, Zhenhua
    JOURNAL OF ENERGY CHEMISTRY, 2021, 53 : 412 - 418
  • [9] Dendrite-Free Non-Newtonian Semisolid Lithium Metal Anode
    Zhang, Yunbo
    Han, Zhiyuan
    Huang, Zhijia
    Zhang, Chen
    Luo, Chong
    Zhou, Guangmin
    Lv, Wei
    Yang, Quan-Hong
    ACS ENERGY LETTERS, 2021, 6 (11) : 3761 - 3768
  • [10] Hosting Ultrahigh Areal Capacity and Dendrite-free Lithium via Porous Scaffold
    Yan, Huibo
    Shen, Chao
    Yuan, Kai
    Zhang, Kun
    Liu, Xingrui
    Wang, Jian-Gan
    Xie, Keyu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (04): : 4776 - 4783