Background and Objective: Danoprevir, a potent, selective inhibitor of the hepatitis C virus (HCV) NS3/4A protease, is metabolized by cytochrome P450 (CYP) 3A. Clinical studies in HCV patients have shown a potential need for a high danoprevir daily dose and/or dosing frequency. Ritonavir, an HIV-1 protease inhibitor (PI) and potent CYP3A inhibitor, is used as a pharmacokinetic enhancer at subtherapeutic doses in combination with other HIV PIs. Coadministering danoprevir with ritonavir as a pharmacokinetic enhancer could allow reduced danoprevir doses and/or dosing frequency. Here we evaluate the impact of ritonavir on danoprevir pharmacokinetics. Methods: The effects of low-dose ritonavir on danoprevir pharmacokinetics were simulated using Simcyp, a population-based simulator. Following results from this drug-drug interaction (DDI) model, a crossover study was performed in healthy volunteers to investigate the effects of acute and repeat dosing of low-dose ritonavir on danoprevir single-dose pharmacokinetics. Volunteers received a single oral dose of danoprevir 100 mg in a fixed sequence as follows: alone, and on the first day and the last day of 10-day dosing with ritonavir 100 mg every 12 hours. Results: The initial DDI model predicted that following multiple dosing of ritonavir 100 mg every 12 hours for 10 days, the danoprevir area under the plasma concentration-time curve (AUC) from time zero to 24 hours and maximum plasma drug concentration (C-max) would increase by about 3.9- and 3.2-fold, respectively. The clinical results at day 10 of ritonavir dosing showed that the plasma drug concentration at 12 hours postdose, AUC from time zero to infinity and C-max of danoprevir increased by approximately 42-fold, 5.5-fold and 3.2-fold, respectively, compared with danoprevir alone. The DDI model was refined with the clinical data and sensitivity analyses were performed to better understand factors impacting the ritonavir-danoprevir interaction. Conclusion: DDI model simulations predicted that danoprevir exposures could be successfully enhanced with ritonavir coadministration, and that a clinical study confirming this result was warranted. The clinical results demonstrate that low-dose ritonavir enhances the pharmacokinetic profile of low-dose danoprevir such that overall danoprevir exposures can be reduced while sustaining danoprevir trough concentrations.