A splitting-based finite element method for the Biot poroelasticity system

被引:11
|
作者
Chaabane, Nabil [1 ]
Riviere, Beatrice [1 ]
机构
[1] Rice Univ, CAAM Dept, 6100 Main MS-134, Houston, TX 77005 USA
关键词
Biot system; Poroelasticity; Decoupling method; Error estimates; Finite element method; CONSOLIDATION; CONVERGENCE; MODELS;
D O I
10.1016/j.camwa.2017.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose a finite element method for solving the linear poroelasticity equations. Both displacement and pressure are approximated by continuous piecewise polynomials. The proposed method is sequential, leading to decoupled smaller linear systems compared to the systems resulting from a fully implicit finite element approach. A priori error estimates are derived. Numerical results validate the theoretical convergence rates. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2328 / 2337
页数:10
相关论文
共 50 条
  • [31] A stabilized finite element method for finite-strain three-field poroelasticity
    Lorenz Berger
    Rafel Bordas
    David Kay
    Simon Tavener
    Computational Mechanics, 2017, 60 : 51 - 68
  • [32] A stabilized finite element method for finite-strain three-field poroelasticity
    Berger, Lorenz
    Bordas, Rafel
    Kay, David
    Tavener, Simon
    COMPUTATIONAL MECHANICS, 2017, 60 (01) : 51 - 68
  • [33] On Splitting Schemes in the Mixed Finite Element Method
    Voronin, K. V.
    Laevsky, Yu. M.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2012, 5 (02) : 150 - 155
  • [34] On splitting schemes in the mixed finite element method
    K. V. Voronin
    Yu. M. Laevsky
    Numerical Analysis and Applications, 2012, 5 (2) : 150 - 155
  • [35] MIXED AND MULTIPOINT FINITE ELEMENT METHODS FOR ROTATION-BASED POROELASTICITY
    Boon, Wietse M.
    Fumagalli, Alessio
    Scotti, Anna
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (05) : 2485 - 2508
  • [36] Spectrum Splitting-Based Performance of Combined Photovoltaic Thermoelectric Generator System
    Alnahhal, Ahmed Issa
    Plesz, Balazs
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2024, 14 (09): : 1560 - 1567
  • [37] A fully coupled scheme using virtual element method and finite volume for poroelasticity
    Julien Coulet
    Isabelle Faille
    Vivette Girault
    Nicolas Guy
    Frédéric Nataf
    Computational Geosciences, 2020, 24 : 381 - 403
  • [38] A generalized multiscale finite element method for poroelasticity problems II: Nonlinear coupling
    Brown, Donald L.
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 297 : 132 - 146
  • [39] A MIXED FINITE ELEMENT METHOD FOR NEARLY INCOMPRESSIBLE MULTIPLE-NETWORK POROELASTICITY
    Lee, J. J.
    Piersanti, E.
    Mardal, K-a
    Rognes, M. E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A722 - A747
  • [40] A scaled boundary finite element formulation for poroelasticity
    Ooi, Ean Tat
    Song, Chongmin
    Natarajan, Sundararajan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (08) : 905 - 929