On a nonlocal degenerate parabolic problem

被引:15
|
作者
Almeida, Rui M. P. [2 ]
Antontsev, Stanislav N. [1 ]
Duque, Jose C. M. [2 ]
机构
[1] Univ Lisbon, CMAF CIO, P-1699 Lisbon, Portugal
[2] Univ Beira Interior, Dept Math, Fac Sci, Covilha, Portugal
基金
俄罗斯科学基金会;
关键词
Nonlocal; Degenerate; Parabolic; PDE; EQUATIONS; BEHAVIOR;
D O I
10.1016/j.nonrwa.2015.07.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Conditions for the existence and uniqueness of weak solutions for a class of nonlinear nonlocal degenerate parabolic equations are established. The asymptotic behaviour of the solutions as time tends to infinity are also studied. In particular, the finite time extinction and polynomial decay properties are proved. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 157
页数:12
相关论文
共 50 条
  • [31] Blow-up for a degenerate parabolic equation with nonlocal source and nonlocal boundary
    Mu, Chunlai
    Liu, Dengming
    Mi, Yongsheng
    APPLICABLE ANALYSIS, 2011, 90 (09) : 1373 - 1389
  • [32] On the cauchy problem for a degenerate parabolic equation
    Winkler, M
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (03): : 677 - 690
  • [33] Viscosity solution for a degenerate parabolic problem
    Maliki, M
    PARTIAL DIFFERENTIAL EQUATIONS, PROCEEDINGS, 2002, 229 : 249 - 258
  • [34] A doubly critical degenerate parabolic problem
    Winkler, M
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (14) : 1619 - 1627
  • [35] CAUCHY PROBLEM FOR DEGENERATE PARABOLIC EQUATIONS
    FLEMING, WH
    JOURNAL OF MATHEMATICS AND MECHANICS, 1964, 13 (06): : 987 - &
  • [36] On a degenerate parabolic problem in Holder spaces
    Berroug, T
    Ding, H
    Labbas, R
    Sadallah, BK
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (02) : 811 - 833
  • [37] PARABOLIC PROBLEM FOR DEGENERATE ELLIPTIC OPERATORS
    SABLETOUGERON, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (09): : 703 - 706
  • [38] AN ANTIMAXIMUM PRINCIPLE FOR A DEGENERATE PARABOLIC PROBLEM
    Francisco Padial, Juan
    Takac, Peter
    Tello, Lourdes
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (7-8) : 601 - 648
  • [39] SYMMETRIZATION IN A NONLINEAR DEGENERATE PARABOLIC PROBLEM
    TRANSIRICO, M
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 149 : 329 - 346
  • [40] Asymptotic stability for a nonlocal parabolic problem
    Fan, Mingshu
    Xia, Anyin
    Li, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 740 - 745