PSL(2, C), THE EXPONENTIAL AND SOME NEW FREE GROUPS

被引:2
|
作者
Panazzolo, Daniel [1 ,2 ]
机构
[1] Univ Haute Alsace, Lab Math Informat & Applicat, Mulhouse, France
[2] Univ Strasbourg, Strasbourg, France
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2018年 / 69卷 / 01期
关键词
NON-ACCUMULATION;
D O I
10.1093/qmath/hax032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a normal form result for the groupoid of germs generated by PSL(2, C) and the exponential map. We discuss three consequences of this result: (1) a generalization of a result of Cohen about the group of translations and powers, which gives a positive answer to a problem posed by Higman; (2) as proof that the subgroup of Homeo(R, + infinity) generated by the positive affine maps and the exponential map is isomorphic to an HNN-extension; (3) a finitary version of the immiscibility conjecture of Ecalle-Martinet-Moussu-Ramis.
引用
收藏
页码:75 / 117
页数:43
相关论文
共 50 条