POPULATING BIOMEDICAL ONTOLOGIES FROM NATURAL LANGUAGE TEXTS

被引:0
|
作者
Maria Ruiz-Martinez, Juana [1 ]
Valencia-Garcia, Rafael [1 ]
Martinez-Bejar, Rodrigo [1 ]
Hoffmann, Achim [2 ]
机构
[1] Univ Murcia, Fac Comp Sci, Campus Espinardo, E-30100 Murcia, Spain
[2] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
关键词
Ontology Population; Semantic Role; Knowledge Acquisition; KNOWLEDGE; RECOGNITION; ACQUISITION; EXTRACTION; MODEL;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ontology population is a knowledge acquisition activity that relies on (semi-) automatic methods to transform unstructured, semi-structured and structured data sources into instance data. In this work, a semantic-role based process for ontology population is presented that provides a suitable framework for textual knowledge acquisition in the biological domain. In particular, with our approach, a given ontology can be enriched by adding instances gathered from biological natural language texts. Our system's modular architecture provides a greater versatility than current approaches in the mentioned domain, as the process of ontology population is not directly dependent on the linguistic rules developed from the corpus.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [31] Evaluation of Language Models for Multilabel Classification of Biomedical Texts
    Syriopoulos, Panagiotis G.
    Andriopoulos, Andreas D.
    Koutsomitropoulos, Dimitrios A.
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT I, AIAI 2024, 2024, 711 : 68 - 78
  • [32] Mining Arguments from Cancer Documents Using Natural Language Processing and Ontologies
    Groza, Adrian
    Popa, Oana Maria
    2016 IEEE 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2016, : 77 - 84
  • [33] Artificial ontologies and real thoughts: Populating the semantic web?
    Ahmad, Khurshid
    AI(ASTERISK)IA 2007: ARTIFICIAL INTELLIGENCE AND HUMAN-ORIENTED COMPUTING, 2007, 4733 : 3 - 23
  • [34] Populating legal ontologies using semantic role labeling
    Humphreys, Llio
    Boella, Guido
    van der Torre, Leendert
    Robaldo, Livio
    Di Caro, Luigi
    Ghanavati, Sepideh
    Muthuri, Robert
    ARTIFICIAL INTELLIGENCE AND LAW, 2021, 29 (02) : 171 - 211
  • [35] Populating Legal Ontologies using Semantic Role Labeling
    Humphreys, Llio
    Boella, Guido
    van der Torre, Leendert
    Robaldo, Livio
    Di Caro, Luigi
    Ghanavati, Sepideh
    Muthuri, Robert
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 2157 - 2166
  • [36] Populating legal ontologies using semantic role labeling
    Llio Humphreys
    Guido Boella
    Leendert van der Torre
    Livio Robaldo
    Luigi Di Caro
    Sepideh Ghanavati
    Robert Muthuri
    Artificial Intelligence and Law, 2021, 29 : 171 - 211
  • [37] Polysemy in Controlled Natural Language Texts
    Gruzitis, Normunds
    Barzdins, Guntis
    CONTROLLED NATURAL LANGUAGE, 2010, 5972 : 102 - 120
  • [38] Natural Language Processing for Historical Texts
    Rosmorduc, Serge
    TRAITEMENT AUTOMATIQUE DES LANGUES, 2012, 53 (03): : 155 - 157
  • [39] Natural Language Processing for Historical Texts
    Romary, Laurent
    COMPUTATIONAL LINGUISTICS, 2014, 40 (01) : 231 - 233
  • [40] The rhetorical parsing of natural language texts
    Marcu, D
    35TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 8TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, 1997, : 96 - 103