High-Throughput Computational Screening of New Li-Ion Battery Anode Materials

被引:167
|
作者
Kirklin, Scott [1 ]
Meredig, Bryce [1 ]
Wolverton, Chris [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
TOTAL-ENERGY CALCULATIONS; INITIO MOLECULAR-DYNAMICS; REVERSIBLE LITHIUM UPTAKE; TRANSITION METAL-CARBON; HIGH-PRESSURE SYNTHESIS; SI-M M; NEGATIVE ELECTRODE; 1ST PRINCIPLES; ELECTROCHEMICAL CHARACTERISTICS; SILICON;
D O I
10.1002/aenm.201200593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use density functional theory (DFT) in conjunction with grand canonical linear programming (GCLP), a powerful automated tool for analyzing ground state thermodynamics, to exhaustively enumerate the 515 thermodynamically stable lithiation reactions of transition metal silicides, stannides and phosphides, and compute cell potential, volume expansion, and capacity for each. These reactions comprise an exhaustive list of all possible thermodynamically stable ternary conversion reactions for these transition metal compounds. The reactions are calculated based on a library DFT energies of 291 compounds, including all transition metal silicides, phosphides and stannides found in the Inorganic Crystal Structure Database (ICSD). We screen our computational database for the most appealing anode properties based on gravimetric capacity, volumetric capacity, cell potential, and volume expansion when compared with graphitic carbon anodes. This high-throughput computational approach points towards several promising anode compositions with properties significantly superior to graphitic carbon, including CoSi2, TiP and NiSi2.
引用
收藏
页码:252 / 262
页数:11
相关论文
共 50 条
  • [31] Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
    Greeley, Jeff
    Jaramillo, Thomas F.
    Bonde, Jacob
    Chorkendorff, I. B.
    Norskov, Jens K.
    NATURE MATERIALS, 2006, 5 (11) : 909 - 913
  • [32] Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
    Jeff Greeley
    Thomas F. Jaramillo
    Jacob Bonde
    Ib Chorkendorff
    Jens K. Nørskov
    Nature Materials, 2006, 5 : 909 - 913
  • [33] High-throughput computational screening of nanoporous materials in targeted applications
    Ren, Emmanuel
    Guilbaud, Philippe
    Coudert, Francois-Xavier
    DIGITAL DISCOVERY, 2022, 1 (04): : 355 - 374
  • [34] Screening chloride Li-ion conductors using high-throughput force-field molecular dynamics
    Aizu, Shin
    Takimoto, Shuta
    Tanibata, Naoto
    Takeda, Hayami
    Nakayama, Masanobu
    Kobayashi, Ryo
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (05) : 3035 - 3044
  • [35] Anode material of CoMnSb for rechargeable Li-ion battery
    Matsuno, Shinsuke
    Nakayama, Masanobu
    Wakihara, Masataka
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) : A61 - A65
  • [36] Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes
    Bhatt, Mahesh Datt
    O'Dwyer, Colm
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) : 4799 - 4844
  • [37] Synthesis of Titania for Anode Material of Li-Ion Battery
    Purwanto, Agus
    Dyartanti, Endah
    Inayati
    Sutopo, Wahyudi
    Nizam, Muhammad
    PROCEEDINGS OF THE 2013 JOINT INTERNATIONAL CONFERENCE ON RURAL INFORMATION & COMMUNICATION TECHNOLOGY AND ELECTRIC-VEHICLE TECHNOLOGY (RICT & ICEV-T), 2013,
  • [38] Nanocomposite anode materials for Li-ion batteries
    Wada, M
    Yin, J
    Tanabe, E
    Kitano, Y
    Tanase, S
    Kajita, O
    Sakai, T
    ELECTROCHEMISTRY, 2003, 71 (12) : 1064 - 1066
  • [39] Composite anode materials for Li-ion batteries
    Wen, Zhaoyin
    Yang, Xuefin
    Huang, Shahua
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 1041 - 1045
  • [40] Nanostructured anode materials for Li-ion batteries
    Zhao, Nahong
    Fu, Lijun
    Yang, Lichun
    Zhang, Tao
    Wang, Gaojun
    Wu, Yuping
    van Ree, Teunis
    PURE AND APPLIED CHEMISTRY, 2008, 80 (11) : 2283 - 2295