Modeling Cloud Computing Risk Assessment Using Machine Learning

被引:2
|
作者
Ahmed, Nada [1 ]
Abraham, Ajith [1 ,2 ,3 ]
机构
[1] Sudan Univ Sci Technol, Fac Comp Sci & Informat Technol, Khartoum, Sudan
[2] Machine Intelligence Res Labs, Sci Network Innovat & Res Excellence, Auburn, WA USA
[3] VSB Tech Univ Ostrava, IT4Innovat, Ctr Excellence, Ostrava, Czech Republic
关键词
Cloud computing; classification algorithms; data mining; feature selection; FEATURE-SELECTION; ALGORITHM; SECURITY; CLASSIFICATION; ISSUES;
D O I
10.1007/978-3-319-13572-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cloud computing emerged in recent years as the most significant developments in modern computing. However, there are several risks involved in using a cloud environment. To make the decision of migrating to cloud services there is a great need to assess the various risks involved. The main target of risk assessment is to define appropriate controls for reducing or eliminating those risks. We conducted a survey and formulated different associated risk factors to simulate the data from the experiments. We applied different feature selection algorithms such as Best-First, and random search algorithms methods to reduce the attributes to 3, 4, and 9 attributes, which enabled us to achieve better accuracy. Further, seven function approximation algorithms, namely Isotonic Regression, Randomizable Filter Classifier, Kstar, Extra Tree, IBK, multilayered perceptron, and SMOreg were selected after experimenting with more than thirty different algorithms. The experimental results reveal that feature reduction and prediction algorithms is very efficient and can achieve high accuracy.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条
  • [21] Detection and mitigation of DDoS attack in cloud computing using machine learning algorithm
    Amjad, Aroosh
    Alyas, Tahir
    Farooq, Umer
    Tariq, Muhammad Arsian
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2019, 6 (23) : 1 - 8
  • [22] Predictive Resource Allocation Strategies for Cloud Computing Environments Using Machine Learning
    Kamble, Torana
    Deokar, Sanjivani
    Wadne, Vinod S.
    Gadekar, Devendra P.
    Vanjari, Hrishikesh Bhanudas
    Mange, Purva
    JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (02) : 68 - 77
  • [23] DDoS Attack Detection using Machine Learning Techniques in Cloud Computing Environments
    Zekri, Marwane
    El Kafhali, Said
    Aboutabit, Noureddine
    Saadi, Youssef
    PROCEEDINGS OF 2017 3RD INTERNATIONAL CONFERENCE OF CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH), 2017, : 236 - 242
  • [24] Analysis of Job Failure and Prediction Model for Cloud Computing Using Machine Learning
    Jassas, Mohammad S.
    Mahmoud, Qusay H.
    SENSORS, 2022, 22 (05)
  • [25] A Secure Data Classification Model in Cloud Computing Using Machine Learning Approach
    Kaur, Kulwinder
    Zandu, Vikas
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (08): : 13 - 21
  • [26] Malicious attack detection approach in cloud computing using machine learning techniques
    M. Arunkumar
    K. Ashok Kumar
    Soft Computing, 2022, 26 : 13097 - 13107
  • [27] Spatial Modeling of Maritime Risk Using Machine Learning
    Rawson, Andrew
    Brito, Mario
    Sabeur, Zoheir
    RISK ANALYSIS, 2022, 42 (10) : 2291 - 2311
  • [28] Machine Learning Based Cloud Computing Anomalies Detection
    Chkirbene, Zina
    Erbad, Aiman
    Hamila, Ridha
    Gouissem, Ala
    Mohamed, Amr
    Hamdi, Mounir
    IEEE NETWORK, 2020, 34 (06): : 178 - 183
  • [29] A Review of Machine Learning Algorithms for Cloud Computing Security
    Butt, Umer Ahmed
    Mehmood, Muhammad
    Shah, Syed Bilal Hussain
    Amin, Rashid
    Shaukat, M. Waqas
    Raza, Syed Mohsan
    Suh, Doug Young
    Piran, Md. Jalil
    ELECTRONICS, 2020, 9 (09) : 1 - 25
  • [30] Machine Learning Based Workload Prediction in Cloud Computing
    Gao, Jiechao
    Wang, Haoyu
    Shen, Haiying
    2020 29TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2020), 2020,