Data Mining by Symbolic Fuzzy Classifiers and Genetic Programming

被引:0
|
作者
Owais, Suhail [1 ]
Kroemer, Pavel [2 ]
Platos, Jan [2 ]
Snasel, Vaclav [2 ]
Zelinka, Ivan [2 ]
机构
[1] ASU, Dept Comp Sci, IT Coll, Amman, Jordan
[2] VSB Tech Univ Ostrava, Dept Comp Sci, FEECS, Ostrava, Czech Republic
关键词
TEXT RETRIEVAL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are various techniques for data mining and data analysis. Among them, hybrid approaches combining two or more algorithms gain importance as the complexity and dimension of real world data sets grows. In this paper, we present an application of evolutionary-fuzzy classification technique for data mining. Genetic programming is deployed to evolve a fuzzy classifier and an example of real world application is presented.
引用
收藏
页码:273 / +
页数:3
相关论文
共 50 条
  • [31] Exploring the power of genetic search in learning symbolic classifiers
    Neri, F
    Saitta, L
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (11) : 1135 - 1141
  • [32] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [33] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [34] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
  • [35] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [36] The Inefficiency of Genetic Programming for Symbolic Regression
    Kronberger, Gabriel
    de Franca, Fabricio Olivetti
    Desmond, Harry
    Bartlett, Deaglan J.
    Kammerer, Lukas
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 273 - 289
  • [37] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [38] On improving genetic programming for symbolic regression
    Gustafson, S
    Burke, EK
    Krasnogor, N
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 912 - 919
  • [39] Fuzzy genetic programming method for analysis of ground movements due to underground mining
    Li, Wen-Xiu
    Dai, Lan-Fang
    Hou, Xiao-Bing
    Lei, Wen
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2007, 44 (06) : 954 - 961
  • [40] Linguistic cost-sensitive learning of Genetic Fuzzy Classifiers for imprecise data
    Palacios, Ana M.
    Sanchez, Luciano
    Couso, Ines
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2011, 52 (06) : 841 - 862