Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes

被引:13
|
作者
Hirakawa, Yoshihisa [1 ]
Burki, Fabien [1 ]
Keeling, Patrick J. [1 ]
机构
[1] Univ British Columbia, Dept Bot, Canadian Inst Adv Res, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Endosymbiosis; Protein targeting; Chlorarachniophyte; Plastid; Mitochondrion; ARABIDOPSIS-THALIANA; EVOLUTIONARY HISTORY; PROTEIN; CHLOROPLAST; PEPTIDES; SEQUENCE; NUCLEOMORPH; MUTAGENESIS; APICOPLAST; SIGNALS;
D O I
10.1242/jcs.116533
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In plants, many nucleus-encoded proteins are targeted to both mitochondria and plastids, and this process is generally mediated by ambiguous N-terminal targeting sequences that are recognized by receptors on both organelles. In many algae, however, plastids were acquired by secondarily engulfing green or red algae, which were retained within the endomembrane system. Protein targeting to these secondary plastids is more complex, and because they do not reside directly in the cytoplasm, dual targeting cannot function as it does in plant cells. Here we investigate dual targeting of aminoacyl-tRNA synthetases (aaRSs) in chlorarachniophytes, which are complex algae that possess secondary plastids and a relict nucleus derived from a green algal endosymbiont. Chlorarachniophytes have four genome-containing compartments, but almost all the aaRSs are nucleus-encoded and present in fewer than four copies (some as few as two), suggesting multiple targeting. We characterized the subcellular localization of two classes, HisRS (three copies) and GlyRS (two copies), using GFP fusion proteins. In both cases, one copy was dually targeted to mitochondria and plastids, but unlike plants this was mediated by translation initiation variants. We also found that the periplastidal compartment (the relict green algal cytoplasm) lacks both GlyRS and a cognate tRNA, suggesting that pre-charged host tRNAs are imported into this compartment. Leader analysis of other aaRSs suggests that alternative translation is a common strategy for dual targeting in these complex cells. Overall, dual targeting to mitochondria and plastids is a shared feature of plastid-bearing organisms, but the increased complexity of trafficking into secondary plastids requires a different strategy.
引用
收藏
页码:6176 / 6184
页数:9
相关论文
共 50 条
  • [21] Roles of Aminoacyl-tRNA Synthetases in Cancer
    Zhou, Zheng
    Sun, Bao
    Nie, Anzheng
    Yu, Dongsheng
    Bian, Meng
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [22] Characterization of Aminoacyl-tRNA Synthetases in Chromerids
    Sharaf, Abdoallah
    Gruber, Ansgar
    Jiroutova, Katerina
    Obornik, Miroslav
    GENES, 2019, 10 (08)
  • [23] The aminoacyl-tRNA synthetases of Drosophila melanogaster
    Lu, Jiongming
    Marygold, Steven J.
    Gharib, Walid H.
    Suter, Beat
    FLY, 2015, 9 (02) : 53 - 61
  • [24] Aminoacyl-tRNA synthetases in medicine and disease
    Yao, Peng
    Fox, Paul L.
    EMBO MOLECULAR MEDICINE, 2013, 5 (03) : 332 - 343
  • [25] Aminoacyl-tRNA synthetases as therapeutic targets
    Nam Hoon Kwon
    Paul L. Fox
    Sunghoon Kim
    Nature Reviews Drug Discovery, 2019, 18 : 629 - 650
  • [26] Association of Aminoacyl-tRNA Synthetases with Cancer
    Kim, Doyeun
    Kwon, Nam Hoon
    Kim, Sunghoon
    AMINOACYL-TRNA SYNTHETASES IN BIOLOGY AND MEDICINE, 2014, 344 : 207 - 245
  • [27] Evolution of structure in the aminoacyl-tRNA synthetases
    O'Donoghue, PM
    Luthey-Schulten, Z
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U275 - U275
  • [28] Noncanonical functions of aminoacyl-tRNA synthetases
    Smirnova, E. V.
    Lakunina, V. A.
    Tarassov, I.
    Krasheninnikov, I. A.
    Kamenski, P. A.
    BIOCHEMISTRY-MOSCOW, 2012, 77 (01) : 15 - 25
  • [29] Intraphylum Diversity and Complex Evolution of Cyanobacterial Aminoacyl-tRNA Synthetases
    Luque, Ignacio
    Loreto Riera-Alberola, Maria
    Andujar, Alfonso
    Ochoa de Alda, Jesus A. G.
    MOLECULAR BIOLOGY AND EVOLUTION, 2008, 25 (11) : 2369 - 2389
  • [30] Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis
    Khan, Krishnendu
    Gogonea, Valentin
    Fox, Paul L.
    TRANSLATIONAL ONCOLOGY, 2022, 19