Fault Detection of Planetary Gearboxes Based on an Adaptive Ensemble Empirical Mode Decomposition

被引:2
|
作者
Lei, Yaguo [1 ]
Li, Naipeng [1 ]
Lin, Jing [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Planetary gearboxes; Adaptive ensemble empirical mode decomposition; Fault detection; DIAGNOSIS;
D O I
10.1007/978-3-319-09507-3_73
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Planetary gearboxes are widely used in modern industry because of their advantages of large transmission ratio, strong load-bearing capacity, etc. Planetary gearboxes differ from fixed-axis gearboxes and exhibit unique behaviors, which increase the difficulty of fault detection. The vibration based signal processing technique is one of the principal tools for detecting gearbox faults. Empirical mode decomposition (EMD), as a time-frequency analysis technique, has been used to process nonlinear and non-stationary problems. But it has the shortcoming of mode mixing in decomposing signals. To overcome this shortcoming, ensemble empirical mode decomposition (EEMD) was proposed accordingly. EEMD can reduce the mode mixing to some extent. The performance of EEMD, however, depends on the parameters adopted in the EEMD algorithm. In current studies on EEMD, the parameters were generally selected artificially and subjectively. To solve the problem, a new adaptive ensemble empirical mode decomposition method is proposed in this chapter. In the method, the sifting number is adaptively selected and the amplitude of the added noise changes with the signal frequency during the decomposition process. Both simulations and a case of fault detection of a planetary gear demonstrate that the proposed method obtains the improved results compared with the original EEMD.
引用
下载
收藏
页码:837 / 848
页数:12
相关论文
共 50 条
  • [21] A new fault detection strategy using the enhancement ensemble empirical mode decomposition
    Xiang, Jiawei
    Zhong, Yongteng
    12TH INTERNATIONAL CONFERENCE ON DAMAGE ASSESSMENT OF STRUCTURES, 2017, 842
  • [22] QRS Complex Detection Based on Ensemble Empirical Mode Decomposition
    Henzel, Norbert
    INNOVATIONS IN BIOMEDICAL ENGINEERING, 2017, 526 : 286 - 293
  • [23] A COMPLETE ENSEMBLE EMPIRICAL MODE DECOMPOSITION WITH ADAPTIVE NOISE
    Torres, Maria E.
    Colominas, Marcelo A.
    Schlotthauer, Gaston
    Flandrin, Patrick
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4144 - 4147
  • [24] Fault Diagnosis of Rolling Element Bearings Based on Ensemble Empirical Mode Decomposition
    Feng Zhipeng
    Chen Yanjuan
    Ma Fei
    Liu Li
    Hao Rujiang
    Chu Fulei
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 2992 - 2995
  • [25] Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection
    Yuan, Jing
    Ji, Feng
    Gao, Yuan
    Zhu, Jun
    Wei, Chenjun
    Zhou, Yu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 : 323 - 346
  • [26] Rolling Bearings Fault Diagnosis Based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Nonlinear Entropy, and Ensemble SVM
    Li, Rui
    Ran, Chao
    Zhang, Bin
    Han, Leng
    Feng, Song
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [27] Resonance-based sparse adaptive variational mode decomposition and its application to the feature extraction of planetary gearboxes
    Zhu, Jing
    Deng, Aidong
    Li, Jing
    Deng, Minqiang
    Sun, Wenqing
    Cheng, Qiang
    Liu, Yang
    PLOS ONE, 2020, 15 (04):
  • [28] Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise
    Hassan, Ahnaf Rashik
    Subasi, Abdulhamit
    Zhang, Yanchun
    KNOWLEDGE-BASED SYSTEMS, 2020, 191 (191)
  • [29] Self-Adaptive Fault Feature Extraction of Rolling Bearings Based on Enhancing Mode Characteristic of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
    Ma, Fang
    Zhan, Liwei
    Li, Chengwei
    Li, Zhenghui
    Wang, Tingjian
    SYMMETRY-BASEL, 2019, 11 (04):
  • [30] Fault Detection of Planetary Gearboxes Based on Deep Convolutional Neural Network
    Cheng, Zhe
    Hu, Niaoqing
    Chen, Jiageng
    Gao, Ming
    Zhu, Qifeng
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,